Towards Large-Scale POMDP Planning for Robotic Tasks

David Hsu
National University of Singapore

Partially observable Markov decision process (POMDP)

- A discrete POMDP model
- States (configurations)
- Actions
- Observations
- Rewards
- State transition function
- Observation function
- A belief state is a probability distribution over the states.
- A policy is a mapping from a belief to an action. An optimal policy maximizes the expected total reward.

Some history: 1978

- Drake (1962)
- Astrom (1965)
- Aoki (1965)
- Smallwood & Sondik (1971)

Some history: 1998

Complexity of solving POMDPs

- Solving POMDPs exactly is computationally intractable:
 - Finite-horizon POMDPs are PSPACE-complete [Papadimitriou & Tsiklis, 87].
 - Infinite-horizon POMDPs are undecidable [Modiano et al., 99].
“Curse of dimensionality”

- Large state space: exponential in the dimensionality of the state space.
- Large belief space: exponential in the number of states; doubly exponential in the dimensionality of the state space.

Point-based POMDP algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time (sec.)</th>
<th>Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBVI 2003</td>
<td>180.880</td>
<td>-9.18</td>
</tr>
<tr>
<td>HSVI 2003</td>
<td>10.113</td>
<td>-6.17</td>
</tr>
<tr>
<td>Perseus 2005</td>
<td>1.670</td>
<td>-6.17</td>
</tr>
<tr>
<td>HSVI2 2005</td>
<td>24</td>
<td>-6.36</td>
</tr>
<tr>
<td>SARSOP 2008</td>
<td>****</td>
<td>-6.13</td>
</tr>
</tbody>
</table>

Sampling the belief space

- Point-based POMDP algorithms

Factoring

Sampling the state space
Mixed Observability Markov Decision Process (MOMDP)

Mixed observability Markov decision process (MOMDP)

- **state** $s = (x, y)$
- POMDP belief $b(s)$
- MOMDP belief $(x, b(y))$

Factoring the belief space

- state $s = (x, y)$
 - $|X| = 2$, $|Y| = 2$
 - $x = 0$, b_x
 - $x = 1$, b_x

Mixed observability

- **state** $s = (x, y)$
 - number of states $50 \times 50 = 2,500$
- belief $b(s)$
 - 2,500-dimensional space
- belief $(x, b(y))$
 - union of 50-dimensional subspaces
- Potential efficiency gain

Computational efficiency

- POMDP operates in a single $|S|$-dimensional space.
- MOMDP operates in a union of $|X|$ sets of $|Y|$-dimensional spaces, where $|S| = |X| \times |Y|$.
- Computational efficiency gain from MOMDP representation
- Point-based approximation algorithms $\times |X|$
Tag
(Pineau, Gordon & Thrun 2003)

Reparameterized full observability

- Reparameterize the state space
- $x = \sigma$
- $\hat{h}(\sigma)$: the set of states that have non-zero probability of emitting σ
- $y = \text{offset from } \sigma$, indicating the exact state in $h(\sigma)$

Continuous-state POMDPs

Sampling the state space

Continuous-state POMDPs
- PRM (Kavraki et al. 1996)
- EST (Hsu et al. 1999)
- RRT (LaValle & Kuffner 2001)
- Continuous-state POMDPs
 - Belief over continuous state space

Continuous-state POMDPs
- Policy graph (finite-state controller)

Value iteration on a policy graph
$$V_{t+1}(b) = \max_{a \in A} \left\{ R(b, a) + \gamma \sum_{b' \in \mathcal{B}} p(b', a) V_t(b') \right\}$$

Monte Carlo backup
$$V_{t+1}(b) = \max_{a \in A} \left\{ R(b, a) + \gamma \sum_{b' \in \mathcal{B}} p(b', a) V_t(b') \right\}$$

Monte Carlo Value Iteration (MCVI)
- Sample new belief
- MC backup at selected beliefs
- Repeat until convergence
Computational efficiency

\textbf{Theorem}

\[|V^*(b) - V_\delta(b)| \leq \sqrt{\frac{\sigma^2 + \ln |A| + \ln(1/\gamma)}{N}} + \delta b + \gamma^i \]

with probability at least \(1 - \gamma\).

- \(N\): number of samples from the \textit{state space} (Monte Carlo simulations)
- \(\delta_b\): covering of the \textit{belief space}
- \(i\): number of iterations

Grasping

(Hsiao, Kaelbling & Lozano-Perez 2007)

- Uncertain initial position
- Noisy touch sensors on fingers
- Manual discretization

Grasping

- Uncertain initial position
- Noisy touch sensors on fingers
- Manual discretization

Aircraft collision avoidance

Simulation results

<table>
<thead>
<tr>
<th>Model</th>
<th>Algorithm</th>
<th>Risk ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D continuous-state POMDP</td>
<td>MCVI</td>
<td>0.00066</td>
</tr>
<tr>
<td>2D continuous-state POMDP</td>
<td>MCVI</td>
<td>0.017</td>
</tr>
<tr>
<td>2D discrete POMDP</td>
<td>SARSOP</td>
<td>0.035</td>
</tr>
<tr>
<td>TCAS</td>
<td>TCAS</td>
<td>0.061</td>
</tr>
<tr>
<td>Nominal</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

* MIT Lincoln Laboratory CASSATT simulator
* 15,000 encounters from 9 months of radar data in US airspace

What makes some POMDPs easier than others?

Common complexity measures

- Number of states = dimensionality of belief space

An alternative complexity measure

- The covering number \(C(\delta) \) of a set \(S \) is the number of balls of radius \(\delta \) needed to cover \(S \) completely.

Reachable space

- Find an approximately optimal action at \(b_0 \) (on-line action selection)

Theorem
An approximately optimal value \(V(b_0) \) with regret no more than \(\varepsilon \) can be found in time

\[
O \left(C \left(\left(\frac{1 - \gamma}{4\gamma R_{\text{max}}} \right)^2 \log \frac{c(1 - \gamma)}{2R_{\text{max}}} \right) \right)
\]

- The problem is easy if the covering number (“volume”) of the reachable space is small.

Optimally reachable space

Theorem
Finding the optimal action is NP-hard, even if the optimally reachable space has a polynomial-size cover.

Theorem
Given a suitable cover \(C \) of the optimally reachable space, an approximately optimal value \(V(b_0) \) with regret no more than \(\varepsilon \) can be found in time

\[
O \left(|C|^2 + |C| \log \gamma \left(\frac{1 - \gamma}{2R_{\text{max}}} \right) \varepsilon \right)
\]

Implications

- Together, the positive and negative results indicate that finding a suitable cover of the optimally reachable space is a key difficulty.
- The covering number better characterizes the complexity of the problem by capturing the sparsity of the space.

Bounding the covering number

- Several properties, often encountered in practice, reduce the size of covering numbers.
 - Fully observable state variables
 - Sparse beliefs
 - Smooth beliefs
 - Circulant state-transition matrices
 - ...
Summary

• Large belief space: MOMDP

• Large state space: MCVI

• Covering number

POMDP software

Approximate POMDP Planning (APPL) Toolkit

Future Work

Acknowledgments

• Wee Sun Lee, NUS

• Hanna Kurniawati, SMART

• Sylvie Ong, McGill

• Haoyu Bai, NUS

• Yanzhu Du, Stanford

• Shaowei Png, McGill

• Nan Rong, Cornell

• Mykel Kochenderfer
 MIT Lincoln Laboratory

Acknowledgments

• MDA Gambit Game Lab

• Ministry of Education, Singapore

• School of Computing, National University of Singapore