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Three main kinds of graphical models
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• Nodes correspond to random variables

• Edges represent statistical dependencies between the variables



Why do we need graphical models?

• Graphs are an intuitive way of representing and visualising the relationships
between many variables. (Examples: family trees, electric circuit diagrams,
regulatory networks)

• A graph allows us to abstract out the conditional independence relationships
between the variables from the details of their parametric forms. Thus we can
answer questions like: “Is A dependent on B given that we know the value of C
?” just by looking at the graph.

• Graphical models allow us to define general message-passing algorithms that
implement probabilistic inference efficiently. Thus we can answer queries like
“What is p(A|C = c)?” without enumerating all settings of all variables in the
model.

Graphical models = statistics × graph theory × computer science.



Conditional Independence

Marginal Independence:

X⊥⊥Y ⇔ X⊥⊥Y |∅ ⇔ p(X, Y ) = p(X) p(Y )

Conditional Independence:

X⊥⊥Y |V ⇔ p(X, Y |V ) = p(X|V ) p(Y |V )

Also, when p(Y, V ) > 0 :

X⊥⊥Y |V ⇔ p(X|Y, V ) = p(X|V )

In general we can think of conditional independence between sets of variables:

X⊥⊥Y|V ⇔ p(X ,Y|V) = p(X|V) p(Y|V)



Conditional and Marginal Independence (Examples)

• Amount of Speeding Fine ⊥⊥ Type of Car | Speed

• Lung Cancer ⊥⊥ Yellow Teeth | Smoking

• (Position, Velocity)t+1 ⊥⊥ (Position, Velocity)t−1 | (Position, Velocity)t,
Accelerationt

• Child’s Genes ⊥⊥ Grandparents’ Genes | Parents’ Genes

• Ability of Team A ⊥⊥ Ability of Team B

• not ( Ability of Team A ⊥⊥ Ability of Team B | Outcome of A vs B Game )



Directed Graphical Models

(aka Bayesian networks, belief networks, probabilistic directed acyclic graphs)

A directed acyclic graph (DAG) where each node is a random variable and the edges
represent statistical dependencies between the variables.
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The DAG represents a factorization of the joint
probability.

p(A, B, C, D, E) = p(A) p(B) p(C|A, B) p(D|B, C) p(E|C, D)

Each variable is conditionally independent of its non-descendents given its parents.

We can distinguish between learning/inference/estimation of the model parameters
and the model structure (i.e. conditional independence relationships).

Some of the variables may be observed/measured, some may be
hidden/latent/missing.



Model Selection for Discrete Graphs

Which of the following graphical models is the data generating process?
Discrete directed acyclic graphical models: data y = (A,B, C, D, E)n
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“easy”

If the data are just y = (C,D,E)n, and (A,B)n are hidden variables... ?
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Learning Model Structure using Marginal Likelihoods

Let m denote model structure, θ denote model parameters, and y denote observed
data.

We can compare model structures, m, based on their marginal likelihood given the
observed data, y:

p(y|m) =
∫

p(y|θ,m) p(θ|m) dθ, p(m|y) =
p(y|m)p(m)

p(y)

Interpretation of the Marginal Likelihood: The probability of the data given
the model structure averaging over all possible (unknown) parameter values. This
automatically implements Occam’s Razor within the Bayesian framework.



Computing Marginal Likelihoods can be
Computationally Intractable

p(y|m) =
∫

p(y|θ,m) p(θ|m) dθ

• This can be a very complicated high dimensional integral over model
parameters.

• The presence of hidden/latent/missing variables, x, results in additional
dimensions that need to be marginalized out.

p(y|m) =
∫ ∫

p(y,x|θ,m) p(θ|m) dx dθ



Practical Bayesian approaches

• Bayesian Information Criterion (e.g. BIC).

log p(y|m) ≈ log p(y|θ̂ML,m)− d

2
log N

• Laplace approximations:

– Makes a Gaussian approximation about the posterior mode of the parameters.

• Markov chain Monte Carlo methods (MCMC):

– converge to the desired distribution in the limit, but:
– many samples are required to ensure accuracy.
– sometimes hard to assess convergence and reliably compute marginal likelihood.

• Variational approximations...



Lower Bounding the Marginal Likelihood

Variational Bayesian Learning

Let the latent variables be x, data y and the parameters θ.
We can lower bound the marginal likelihood (using Jensen’s inequality):

ln p(y|m) = ln
∫

p(y,x,θ|m) dx dθ

= ln
∫

q(x,θ)
p(y,x,θ|m)

q(x,θ)
dx dθ

≥
∫

q(x,θ) ln
p(y,x,θ|m)

q(x,θ)
dx dθ.

Use a simpler, factorised approximation to q(x,θ) ≈ qx(x)qθ(θ):

ln p(y|m) ≥
∫

qx(x)qθ(θ) ln
p(y,x,θ|m)
qx(x)qθ(θ)

dx dθ

= Fm(qx(x), qθ(θ),y).

(some significant contributors to this framework from 1993-1998: C. M. Bishop, G. E. Hinton,

T. S. Jaakkola, M. I. Jordan, D. J. C. MacKay, R. M. Neal, L. K. Saul)



Variational Bayesian Learning . . .

Maximization of this lower bound, Fm, can be done via EM-like iterative updates:

q(t+1)
x (x) ∝ exp

[∫
ln p(x,y|θ,m) q

(t)
θ (θ) dθ

]
E-like step

q
(t+1)
θ (θ) ∝ p(θ|m) exp

[∫
ln p(x,y|θ,m) q(t+1)

x (x) dx
]

M-like step

Maximizing Fm is equivalent to minimizing KL-divergence between the approximate
posterior, qθ(θ) qx(x) and the true posterior, p(θ,x|y,m):

ln p(y|m)−Fm(qx(x), qθ(θ),y) =
∫

qx(x) qθ(θ) ln
qx(x) qθ(θ)
p(θ,x|y,m)

dx dθ = KL(q‖p)



The Variational Bayesian EM algorithm

EM for MAP estimation

Goal: maximize p(θ|y,m) w.r.t. θ

E Step: compute

q(t+1)
x (x) = p(x|y,θ(t))

M Step:

θ
(t+1)

=argmax θ

Z
q

(t+1)
x (x) ln p(x, y, θ) dx

Variational Bayesian EM

Goal: approximate p(y|m), p(θ|y,m)
VB-E Step: compute

q(t+1)
x (x) = p(x|y, φ̄

(t))

VB-M Step:

q
(t+1)
θ (θ) ∝ exp

»Z
q

(t+1)
x (x) ln p(x, y, θ) dx

–

Properties:

• Based on computing expected natural parameters, φ̄, under q.

• Reduces to the EM algorithm if we constrain qθ(θ) to be a delta-function.

• Fm increases monotonically, and incorporates the model complexity penalty.

• Analytical parameter distributions (but not constrained to be Gaussian).

• VB-E step has same complexity as corresponding E step.



Model Selection for Discrete Graphs

Which of the following graphical models is the data generating process?
Discrete directed acyclic graphical models: data y = (A,B, C, D, E)n
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If the data are just y = (C,D,E)n, and (A,B)n are hidden variables... ?
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A case study for discrete directed graphs

• Bipartite structure: only hidden variables can be parents of observed variables.
• Two binary hidden variables, and four five-valued discrete observed variables.

yi1

si1 si2

yi2 yi3 yi4

i=1...n

• Conjugate prior is Dirichlet, Conjugate-Exponential model, so
VB-EM algorithm is a straightforward modification of EM.

• Experiment: There are 136 distinct structures (out of 256) with 2 latent variables
as potential parents of 4 conditionally independent observed vars.

• Score each structure for twenty varying size data sets:
n ∈ {10, 20, 40, 80, 110, 160, 230, 320, 400, 430, 480, 560, 640, 800, 960, 1120, 1280, 2560, 5120, 10240}

using 3 methods: BIC, VB, and a gold standard Annealed Importance Sampling AIS

• 2720 graph scores computed, times for each: BIC (1.5s), VB (4s), AIS (400s).



Results
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VB score finds correct structure earlier, and more reliably than BIC.



Results, averaged over about 100 parameter draws
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VB is also more accurate than Cheeseman-Stutz (CS) approximation to the marginal
likelihood. In fact we can prove than VB ≥ CS (Beal and Ghahramani, Bayesian
Analysis, 2006).



Summary of case study

• Learning structure of graphical models with latent variables is hard, but there are
many ways of approximating marginal likelihoods.

• Variational Bayesian EM is a viable method for inference in conjugate exponential
models.

• These methods have advantages over MCMC in that they can provide fast
approximate Bayesian inference. Especially important in machine learning
applications with large data sets.

• Results of case study:

– VB is uniformly better than BIC and CS, at little computational cost
– AIS is sometimes better than VB, but is sensitive to tuning parameters of

MCMC, and about 100 times slower.



Part II: How many latent variables should there be?

Y - latent factors (e.g. diseases)
Z - graph structure (binary adjacency matrix)
X - observed binary features (e.g. symptoms)

Solution 1: Do model comparison for m = 1, m = 2, ...

Solution 2: Assume potentially m =∞ of which we only observe a finite number.

Note: this is analogous to the question of how many mixture components to use (model selection

for finite mixture model vs infinite mixture model using Dirichlet processs mixtures).



Graphical models with infinitely many latent variables

“A Non-Parametric Bayesian Method for Inferring Hidden Causes” (Frank Wood,
Tom Griffiths, & Ghahramani, Uncertainty in Artificial Intelligence, 2006)

Y - binary latent factors (diseases)
Z - graph structure
X - observed binary features (symptoms)

“Noisy-or” observations: P (xit = 1|Z,Y, λ, ε) = 1− (1− λ)
P

k zikykt(1− ε)



What should we use as P (Z)?

The matrix Z is a binary matrix of size (N = number of observed variables) × (K
= number of latent variables).

But K →∞.

We can define a consistent distribution over such infinite
sparse binary matrices using the “Indian Buffet Process”
(IBP) (cf Chinese restaurant process, Aldous 1985; Pitman
2002).

A sample from prior shown on right.

Note “rich get richer” property.

We can derive a Gibbs sampler for this model.

ob
je

ct
s 

(c
us

to
m

er
s)

features (dishes)

Prior sample from IBP with α=10

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

90

100



Graphical models with infinitely many latent variables

Gibbs sampling traces Comparison to RJMCMC

Seems to work reliably, and mixed better than RJMCMC.



Graphical models with infinitely many latent variables

(with Frank Wood and Tom Griffiths)
Inferring stroke localization from patient symptoms:

(50 stroke patients, 56 symptoms/signs)



Summary of Part II

• It is possible to do inference and learning in graphical models with infinitely many
latent variables.

• The graph structure can be parametrized using Indian Buffet Processes.

• Sampling from the distribution over structures in these models does not explicitly
require approximating the marginal likelihood.



Part III

Just a pointer, since not much time available...

Goal: to learn a graph structure when we believe there are unobserved latents.

Approach 1: Explicitly represent these latents in a directed graph and learn the
structure using one of the above methods.

Y1 Y2 Y3 Y4

X1

Approach 2: Use a different graphical formalism which can represent all possible
conditional independence relationships that arise from marginalizing out unobserved
latents.1

Y1 Y2 Y3 Y4

Directed Mixed Graphs

1Note: DAGs cannot do this.



Part III b

• To do Bayesian inference in Directed Mixed Graphs we need priors over parameters
that obey the implied conditional independence relationships.

• We have parameterized G-Inverse Wishart priors for the case of Gaussian DMGs
such that

– they obey the appropriate constraints
– a simple and valid Gibbs sampling scheme can be devised.

• We have also defined a “Variational Monte Carlo” scheme which should be fast
in high dimensions.

Silva, R. and Ghahramani, Z. (2006) Bayesian Inference for Gaussian Mixed Graph Models.

Uncertainty in Artificial Intelligence (UAI-2006).



Summary: Graphs with Latent Variables

• Variational methods can be used to learn graphical model structure with latent
variables.2

• It is possible to do inference in graphs with infinitely many latent variables.3

• Unobserved latents can lead to conditional independencies that are naturally
represented as Directed Mixed Graphs; we have developed Bayesian inference
procedures for the Gaussian and Discrete cases.4

http://learning.eng.cam.ac.uk/zoubin
zoubin@eng.cam.ac.uk

2Beal, M.J. and Ghahramani, Z. (2006) Variational Bayesian learning of directed graphical models with hidden
variables. Bayesian Analysis. 1:793–832.

3Wood, F., Griffiths, T.L. and Ghahramani, Z. (2006) A Non-Parametric Bayesian Method for Inferring Hidden
Causes. In Uncertainty in Artificial Intelligence (UAI-2006). 536–543

4 Silva, R., and Ghahramani, Z. (2009) The Hidden Life of Latent Variables: Bayesian Learning with Mixed Graph
Models. Journal of Machine Learning Research 10(Jun):1187–1238.
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Appendix



Conjugate Exponential Models

• If the joint probability of the hidden and observed data is in the

exponential family

• ...and the prior over parameters is conjugate,

• ... then the variational Bayesian procedure becomes a simple
modification of EM.

• This can actually include many interesting models (e.g. FA, SSM,

HMM, MoG, DPM...)



How many samples of AIS are needed?
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About 104 sweeps of sampling needed to achieve VB lower bound.


