
Motion Planning for 3-D Target Tracking among
Obstacles

Tirthankar Bandyopadhyay, Marcelo H. Ang Jr., and David Hsu

National University of Singapore, Singapore 117543, Singapore
{tirthankar,mpeangh}@nus.edu.sg, dyhsu@comp.nus.edu.sg

IN Int. Symp. on Robotics Research (ISRR), 2007

Summary. The goal of target tracking is to compute motion strategies for a robot equipped
with visual sensors, so that it can effectively track a moving target despite obstruction by
obstacles. It is an important problem with many applications in robotics. Existing work focuses
mostly on the 2-D version of the problem, partly due to the complexity of dealing with 3-D
visibility relationships. This paper proposes an online algorithm for 3-D target tracking among
obstacles, using only local geometric information available to a robot’s visual sensors. Key to
this new algorithm is the definition and efficient computation of a risk function, which tries to
capture a target’s ability in escaping from the robot sensors’ visibility region in both short and
long terms. The robot then moves to minimize this risk function locally in a greedy fashion.
In the absence of occlusion by obstacles, the standard tracking algorithm based on visual
servo control can be considered a special case of our algorithm. Experiments show that the
new algorithm generated interesting tracking behaviors in three dimensions and performed
substantially better than visual servo control in simulation.

1 Introduction
Target tracking is an important task for autonomous robots. The goal of this work is
to construct motion strategies for a robot equipped with visual sensors so that it can
effectively track a moving target despite obstruction by obstacles. More precisely,
the robot should always keep the target within the sensors’ visibility region. Target
tracking has attracted considerable attention in recent years [1, 4, 3, 8, 12, 13], but
all the previous efforts have focused on the 2-D case. In this work, we build upon
our earlier work on 2-D target tracking using local geometric information [1] and
extend it to the 3-D case. This substantially expands the range of applications and
potentially improves tracking performance.

Target tracking has many interesting applications in robotics. In surgery, robotic
cameras can keep a patient’s organ or tissue being operated on under constant obser-
vation, despite obstructions by people or instruments. In home environments, mobile
or humanoid robots help to watch over the elderly or children. In wildlife monitor-
ing, deep-sea underwater autonomous vehicles (UAVs) need to navigate in clutter
environments while tracking marine species. The military and security offers many
other potential applications. In all these applications, it is clearly advantageous to
reason about visibility and plan motion in the 3-D rather than the 2-D space.

2 Tirthankar Bandyopadhyay, Marcelo H. Ang Jr., and David Hsu

Moving from the 2-D to the 3-D space also offers opportunities to improve track-
ing performance. The 3-D space is more flexible: the robot gains one additional de-
gree of freedom to maneuver, which potentially improves tracking performance. For
example, a robot helicopter follows and monitors a ground target. If the target turns
around at the corner of a building, the helicopter may choose to fly over the building
to keep the target visible, instead of following the target to turn. However, the same
flexibility leads to several challenges. Just as the robot, the target may also gain more
room to maneuver and more easily escape from the robot sensors’ visibility region.
In addition, the visibility relationships in 3-D are more complex than those in 2-D.

Key to our algorithm is the definition of risk, which tries to capture the target’s
ability in escaping from the robot sensors’ visibility region in both short and long
terms. To select actions effectively, the robot must balance between the short-term
goal of preventing the immediate loss of the target and the long-term goal of keeping
it visible for the maximum duration possible. Interestingly, a good comprise can be
achieved, using only local information available to the robot’s visual sensors. By
analyzing the local geometry, our algorithm computes the global risk function as
a weighted sum of components, each associated with a single visibility constraint.
It then chooses an action so that the robot maneuvers to maintain all the visibility
constraints against the target as well as possible in a weighted average sense.

Target tracking is a special class of motion planning problems that takes into
account both motion constraints and visibility constraints. In classic motion plan-
ning [7], we consider only motion obstructions due to obstacles in the environments
or the robot’s mechanical construction, and the goal is to find a path for the robot
to reach a specified destination, while avoiding the obstacles. In target tracking, we
consider not only motion obstructions, but also visibility obstructions due to the ob-
stacles, and the goal is to keep the target visible for as long as possible. Visibility
relationships thus play a prominent role in deciding the robot’s motion. The target
tracking problem considered here is closely related to active sensing (e.g., [10]). Re-
lated problems have been studied in various domains, e.g., visual servo control [5],
automatic target interception in missile control (e.g., [15]), and visual tracking in
computer vision (e.g., [6]), but in these domains, one does not try to move the sensor
actively in order to avoid motion or visibility obstructions caused by obstacles.

2 Related work
Many variants of the target tracking problem have been studied in the literature, but
they focus mostly on the 2-D case [1, 4, 3, 8, 12, 13]. Suppose that both the envi-
ronment and the target trajectory are unknown in advance, but the robot is equipped
with visual sensors to gather information on the environment and the target. One ap-
proach is to move the robot so as to minimize an objective function that models the
risk for the target to escape from the visibility region of the robot’s sensor [4, 12, 1].
Our work follows this approach and extends it to three dimensions.

There has been little work on the 3-D tracking problem. One reason is that the 3-
D visibility relationships are significantly more complex than their 2-D counterparts.
Although there are data structures for maintaining visibility relationships globally,

Motion Planning for 3-D Target Tracking among Obstacles 3

e.g., aspect graphs [14] and visibility complexes [2], processing all the critical visi-
bility events efficiently in a 3-D environment is a difficult task. The work of Lazebnik
tries to characterize and process these visibility-events for a visibility-based pursuit-
evasion problem [9]. In principle, it is possible to develop a tracking algorithm based
on such a global visibility analysis, but an efficient algorithm has not yet appeared.
The existing algorithms on 3-D tracking mostly rely on visual servo control [11, 16].
They have been used to control a team of unmanned aerial and ground vehicles for
target tracking in a probabilistic game framework [16], but do not take into account
the effect of visual occlusion by obstacles.

Just like its counterparts in 2-D [1, 4, 12], our 3-D tracking algorithm provides a
good trade-off between tracking algorithms based on visual servo control and those
based on dynamic programming [8, 3]. Like visual servo control, our algorithm
uses only local information, but it tries to infer the long-term effects of the robot’s
actions approximately, using the risk function. Dynamic programming can reason
about these long-term effects more accurately, but requires prior knowledge of the
environment and the target behavior. Such information is often difficult to acquire in
practice.

3 Problem formulation
The objective of the robot is to keep the target visible at all times. The tracking
environment is a 3-D space cluttered with obstacles. Such environments may occur
either indoors (e.g., tracking a human in a regular home or office environment) or
outdoors (e.g., tracking a target in an urban environment).

The robot and the target are modeled as free flying point objects with no motion
constraints, except for bounds on their maximum speeds, V and V ′, respectively. We
assume V ′ ≤ V ; otherwise, the problem becomes uninteresting if the target tries to
escape by moving faster than the robot. The robot motion is modeled as a simple
discrete-time transition equation. If at time t, the robot at position x(t) moves with a
velocity v(t), its position at time t + 1 is given by

x(t + 1) = x(t) + v(t)∆t,

with |v(t)| ≤ V for all t. So the feasible position of the robot in ∆t is a sphere of
radius V ∆t centered at x(t).

Both the environment and the target motion are unknown to the robot a priori,
but we assume that the target is initially visible to the robot. The robot uses 3-D
visual sensors, e.g., cameras or laser range finders, for sensing the target and its sur-
roundings. We assume omnidirectional sensing capabilities for the sensors. Visibility
is modeled here as simple line of sight sensing, bounded by a maximal range Dmax.
Thus, in an open space, the robot’s visibility region is a sphere of radius Dmax with
the center at x(t). Obstacles in the environment may obstruct visibility. Let F denote
the space that is within the ball and is free of obstacles. The set of all points q within
F visible to the robot defines the visibility region, V , of the robot at position x:

V = {q ∈ F|qx ⊂ F},

where qx denotes the line segment joining q and x. Clearly, V is star-shaped.

4 Tirthankar Bandyopadhyay, Marcelo H. Ang Jr., and David Hsu

Now we can formalize the tracking problem as follows: Find a sequence of
actions—here, the robot velocities—such that at each instant in time, the target po-
sition lies inside V .

4 The tracking algorithm
The robot plans its actions using local geometric information from its sensors. The
3-D sensors have a visibility region, V . Based on a polyhedral approximation for the
environment geometry, V takes the shape of a generalized polyhedron bounded by
two types of surfaces (shown in Fig.2a): the surfaces that are the boundaries of the
polyhedral obstacles, obstacle surfaces, and the surfaces that lie in F , free surfaces.
The free surfaces can be further divided into occlusion surfaces that are caused by
the obstruction of visibility and range surfaces that are caused by the visibility limits
Dmax. The free surfaces pose the risk of losing the target.

R1

R2

T

P

vr

vn

g

Fig. 1. Relative position
determines risk

For successful tracking, the robot must balance the short-
term goal of preventing the immediate loss of the target
through these free surfaces and the long-term goal of maxi-
mizing the duration of tracking in the future. Let us look at a
simple 2-D example shown in Fig.1. For the robot positioned
at R1, the obstacle (the dark-colored triangle) creates an oc-
clusion edge g with one endpoint at P . The robot has the
short-term goal of preventing the target T ’s escape through
g at the current instant. It achieves this by swinging g away
from the target, using velocity vn. The robot’s longer-term
goal is to move towards P using velocity vr, because it can
eliminate the occlusion edge g completely when it reaches

P . Since the robot’s maximum speed is bounded by V , there is a trade off in choos-
ing the velocity components vr and vn. Clearly, this trade off depends on the relative
positions and velocities of the target and the robot w.r.t P . For example, the robot
at position R2 can afford a higher vr, as the shortest distance from the target to g
is greater than that of the robot and there is no immediate risk of losing the target.
Whereas at R1, the target is closer to g than the robot, and the short-term goal of
preventing the loss of target becomes much more important.

In the 3-D case, occlusion planes replace occlusion edges, and the robot and the
target gain one additional degree of freedom to maneuver. However, the intuition
on balancing the short-term and long-term goals, as illustrated in the 2-D example,
remains basically the same. Below we propose a carefully constructed risk function
to capture this intuition for each free surface. The total risk is a sum of these risks,
weighted by the probabilities of the target’s escaping through the corresponding sur-
faces. The robot’s action is then a local greedy step to minimize the total risk.

4.1 Risk with respect to a Single Occlusion Surface

In general, the occlusion surfaces can be made up of a number of occlusion planes
concatenated to each other. Adjacent occlusion planes meet in the occlusion edges.

Motion Planning for 3-D Target Tracking among Obstacles 5

Obs

Robot

Target

Occlusion Plane

Range Edges

Occlusion Edges

Obs Edge
r′

r

e

n̂

p̂

r̂

v′
O

Oe

g

T

R

Or

Ov

n̂

p̂
r̂

v′
O

d′

d
β

R

T

g

Oe

(a) (b) (c)

Fig. 2. (a) 3-D Visibility Model (b) & (c) Parameters involved in the Risk Formulation

Let us take the occlusion planeO as shown in Fig.2b.O consists of the interior region
(Op) bounded by a pair of occlusion edges (Oe) at the lateral sides, obstacle edge (g)
in front and range edge (Or) at the rear. Let us term the vertex at whichOe and g meet
as occlusion vertex (Ov). O depends on the robot’s position w.r.t the obstacle, and
so the robot can manipulate O by its motion. The robot motion normal to O, along
n̂, increases the plane’s distance to the target by swinging about g. Similarly, motion
parallel to g, along p̂, increases the distance of the Oe to the target by swinging Oe

laterally about Ov . Both these velocity components help in achieving the short term
goal of preventing the target’s immediate escape. On the other hand, motion towards
O, along r̂, improves the future tracking capability of the robot by moving closer to
the obstacle. Introducing a reference frame on the robot aligned to these individual
motion directions : n̂, p̂ and r̂, shown in Fig.2b & 2c, simplifies the analysis.

Let us now derive the risk formulation. The risk of the target’s escape through
O depends on its shortest distance of escape (SDE) to the plane, as denoted by e
in Fig.2b. The smaller the e is, the higher is the risk of the target’s escaping. The
risk also depends on how well the robot can manipulate O away from the target. The
effectiveness of manipulation depends on the relative positioning of the robot and the
target w.r.t O. Let r be the distance between the robot and g, and r′ be the distance
between the target and g, projected into the occlusion plane, shown in Fig.2b. If
r′ > r, the robot has an advantage in swinging O farther away from the target
given the same velocity components of the robot and target normal to O. Similarly
in Fig.2c, if d′ is the distance of the target’s projection on Oe from Ov and d the
corresponding measure for the robot, d′ > d gives the robot an advantage in swinging
Oe about Ov . This “relative vantage” in the robot’s manipulation capabilities of O
over the target can be encoded by a measure of spatial proximity to the occlusion.

Let us construct a vantage zone (D), such that for any position of the target within
that region, the robot cannot eliminate O (by moving towards Oe), before the target
reaches O, given the target’s and robot’s current velocities. Mathematically,

D = {q : q ∈ V
∧

(e(q) < Dsafe)} (1)

where e(q) is the shortest distance to escape for the target from q through O and
Dsafe is the minimum distance O must be kept from the target for the robot to be
able to successfully prevent the target’s escape.

This approach is similar to that proposed for 2-D tracking [1]. But the additional
dimension in 3-D increases the complexity as now the occlusion plane can also be

6 Tirthankar Bandyopadhyay, Marcelo H. Ang Jr., and David Hsu

Oe

g

O

R

g

Oe

O

Oe

O

g

Oe

O

g

(a) DN (b) DL (c) DR (d) DV

Fig. 3. Vantage Zone D for a single occlusion plane

shifted laterally along g in addition to the normal swing about g. Based on the prox-
imity to the occlusion’s features, D can be partitioned into four regions, shown in
Fig.3.

• DN : The region in D that is closest to the interior of O i.e. Op. This region is
depicted in Fig.3a.

• DL : The region in D nearest to the occlusion edge Oe. DL is depicted by semi-
circular cylindrical pieces abutting the occlusion edges, Fig.3b.

• DR : The region in D closest to the obstacle edge g, as shown in Fig.3c. DR is a
semi-circular cylindrical piece abutting g.

• DV : The regions in D nearest to the occlusion vertex, Ov , as shown in Fig.3d.
DV is a pair of spherical sectors.

R

vr

vr

vr

R

vn
−ωnp̂

R

ωpn̂

vp

(a) vr (b) vn (c) vp

Fig. 4. The effect of robot velocities vr ,vn and vp on D

As with O, the robot can manipulate D by its motion. vr causes D to shrink
towards O (Fig.4a), vn causes D to swing about g (Fig.4b), in the normal direction
to theO by an angular velocity ωn and vp shearsD along g by swingingOe laterally
by an angular velocity ωp (Fig.4c). From Fig.2b & 2c, ωn = −(vn/r)p̂, and ωp =
((vp cos β − vr sinβ)/d)n̂.

In order to maintain a good relative vantage over the target, the robot must ma-
nipulate D such that the target is pushed out of D if it is inside, else move D as far
from the target as possible. A good estimate of the relative vantage, is the shortest
amount of time, tD, the target needs to reach the boundary of D. tD is positive if the
target is inside D and negative if outside. We call tD the vantage time. Let P be the
point through which the target exits D. tD can then be computed by,

Motion Planning for 3-D Target Tracking among Obstacles 7

tD =
dist(target,P)

veff
(2)

where veff is the relative velocity of the target w.r.t P . Depending on the robot’s
motion, P can lie either in DN , DL, DR or DV . Optimizing tD over all the four
regions involves finding an optimal velocity v? such that, v? = argmin(tD) ∀P ∈
DN ,DL,DR,DV . To simplify computation, let us approximate tD by its lowest
bound,

tD = min(tDN , tDL, tDR, tDV) (3)
The optimization then reduces to finding v? = ∇tD.

In order to find the analytical expressions for tD in the four regions, let us take
V = V ′. This does not take away the generality of the derivation as we can introduce
a scale factor η such that, V = ηV ′. For the following, we take η = 1, which gives
Dsafe = r.

Computing tDN

e

T

g

v
′

n

Dsafe

ωnr
′
+ vr

DN

Fig. 5. Computing
tDN

Fig.5 shows a piece of DN . The effective velocity of the the
planar DN surface w.r.t the target is veff = vr + ωnr′ − v′n and
effective dist(target,P) = Dsafe − e giving,

tDN =
r − e

vr + ωnr′ − v′n
Interestingly, the result takes the same form as risk optimization
in 2-D [1].

Computing tDL

P
P

Dsafe

d′

e

î

k̂

ĵ

îOv

T
T

Ovm′

m′,

A

A′

Section AA′

tx

Oe

g

g

DL

Fig. 6. Computing tDL

Let us ignore vr for now. Fig.6 shows
a piece of DL. The effective motion of
the target and DL can be shown to lie
along section AA′. We omit the proof
for brevity. Let us introduce a coordi-
nate system fixed at occlusion vertex
Ov {̂i, ĵ, k̂}. The target position t w.r.t
the new coordinates is t = −tx î +
d′ ĵ + ek̂. The effective velocity, veff ,
is a resultant of three components: the
normal and lateral swing, the shrinking of D and the velocity of the target v′.
veff = ωnp̂ × t + ωpk̂ × t − v′. The effect of vr is to shrink R towards Oe.
This gives the condition, | t+ veff tD |ik= Dsafe− vrtD. Solving for tDL gives,

Computing tDR and tDV

8 Tirthankar Bandyopadhyay, Marcelo H. Ang Jr., and David Hsu

v′r

O

Ov

Dsafe vr

e

DR

Fig. 7. Computing tDR

DR and DV behave in a similar way that, neither ωn nor ωp

cause any relative velocity of the surface towards the target in
this case, as shown in Fig.7. Taking the radial component of
velocity and distance, veff = vr−v′r and dist(target,P) =
Dsafe − e giving,

tDR = tDV =
r − e

vr − v′r

tDV is given by the same expression for its corresponding
case.

4.2 Risk with respect to a Single Range Surface

v′r

vr

e

R

Dsafe

P

robot

Fig. 8. Computing tD
for Range

The robot cannot eliminate range surfaces (R) by mov-
ing towards it. In the definition of D, we re-define Dsafe

based on just the radial component of the robot and the tar-
get, as shown in Fig.8. Then the effective velocity becomes
veff = vr − v′r, and dist(target,P) = Dsafe − e. e is then
calculated towards the nearest point in theR. The expression
for tD is the same as that of tDR.

An interesting thing to note is that the behavior generated
by the range surfaces alone, makes the robot move towards
the target. This is exactly the visual servo behavior. This
shows that visual servo is a special case of vantage tracking

when there are no occlusions.
Once tD is found, the gradient of tD computed at the current values gives the

optimal direction to move.

∇tD =
∂tD
∂vr

r̂ +
∂tD
∂vn

n̂ +
∂tD
∂vp

p̂ (4)

Multiple occlusion planes are handled by weighing the individual actions by the
probability of the target’s escape through the particular occlusion plane,

∇Φ =
∑

i

pi(
∂tD
∂vr

r̂ +
∂tD
∂vn

n̂ +
∂tD
∂vp

p̂).

4.3 Escape Probability for the Target

For finding the probability of the target’s escape through any particular occlusion pi,
we predict the motion of the target by independent distributions p(θ) and p(φ) on its
azimuth (θ) and zenith (φ) angle. We assume that the target speed remains constant,
but in general, this can also be modeled by a distribution p(s). The probability is
measured in terms of the integral of the volume subtended by the plane,

pi(φ, θ) =
∫ θ2

θ1

∫ φ2

φ1

p(φ)p(θ)dφdθ

For lack of space we do not go into the details of solving this double integral.

Motion Planning for 3-D Target Tracking among Obstacles 9

(a) CASE I (b) CASE II (c) CASE III

Fig. 9. Control Experiments

5 Experiments
We performed different tests on the algorithm by providing it with various environ-
ments and analyzing the results. In the first test, we check for specific behaviors of
the algorithm with different configurations of the target in a simple environment,
Fig.9. In the second test, we run the algorithm in a more complex urban environment
amid sensor uncertainties, Fig.10, and analyze its performance metrics.

We create a simple scenario in Fig.9, where the target (red cube) tries to escape
the visibility of the robot (blue sphere), by moving behind the obstacle (maroon
wall). To analyze the fundamental characteristics of the robot motion, in response to
the target’s motion against an occlusion plane, we turn off all the occlusion planes
except the blue plane at the top of the wall. The dotted lines depict the path executed
by the target and the robot, while the solid segments show their current heading. For
all the cases, the robot is placed in front of the wall. The target’s path is unknown to
the robot. The robot’s velocity is generated at each step by Eqn.3 & 4.

CASE I : When the target is placed in front of the wall, shown in Fig.9a, its shortest
path of escape from the robot’s visibility passes through the top edge of the wall.
This means that any amount of swinging of the occlusion plane by the robot
would be fruitless and the robot should move towards this edge. This behavior
is reproduced by the robot, as vr is the only component produced by Eqn.3 & 4.

CASE II : Next, let the target be placed above the wall somewhere middle along its
horizontal length, shown in Fig.9b. For such a position, the target’s closest point
of escape is its normal projection on the occlusion plane. In such a situation
then, it makes sense to swing the plane away from the target. The algorithm
manages to produce a combination of vn and vr to address the scenario. vn

helps in swinging the plane, and vr helps in improving the vantage by moving
closer to g. This combination, that balances the long term and short term goals,
generates a curved path as seen in the figure.

CASE III : If the target is placed not at the middle, but towards one end over the
wall, a lateral swing can increase the shortest distance value in addition to the
normal swinging motion. This is characteristic to 3-D environments where the
robot can prevent the target’s escape by shifting the plane laterally away from
under the target. In general, people tend to show this kind of behavior in such a

10 Tirthankar Bandyopadhyay, Marcelo H. Ang Jr., and David Hsu

(a) (b) (c)

Fig. 10. Realistic simulation setup using Gazebo. (a) Environment setup, (b) Robot viewpoint,
(c) Extracting O from 3-D range scan

situation. This behavior is also shown by the algorithm as it generates a horizon-
tal component vp, in addition to vn and vp. This shows that the algorithm is able
to exploit the additional dimension available to the robot in 3-D. Moreover, this
is achieved using only local information.

We next test the effectiveness of our algorithm in a realistic scenario by imple-
menting it in the Gazebo robot simulator [17]. Gazebo is a multi-robot simulator for
both indoor and outdoor environments in 3-D. It generates realistic sensor feedback,
object collision, and dynamics. Using Gazebo, we build an urban environment in
which a robot helicopter tracks our target, another helicopter, shown in Fig.10. The
environment has buildings of various sizes, separated by alleys and pathways. We
mount a 3-D sweeping laser range finder on the robot helicopter. In general, this can
be replaced by any reliable vision system without much impact on our algorithm. The
3-D range data is processed to extract occlusion planes. Fig.10c shows an example.
The set of points is the sensor data from the laser range finder. The dark blue planes
are the occlusion planes obtained by the range discontinuity upon thresholding. The
red dot indicates the target position.

We compare our algorithm with the popular visual servo algorithm. Both are on-
line algorithms that can be implemented using exactly the same setup. To evaluate
the performance, we compare the shortest distance to escape (SDE) from the target
position to the nearest occlusion plane. Clearly, if an algorithm alway maintains su-
perior SDE throughout, thereby keeping the target away from the possible escape
regions, it can be considered to have a better tracking performance.

Figures 11a & 11b, show the tracking results for the servo algorithm and our van-
tage algorithm, respectively. The target executes an identical path, which is marked in
Fig.11a. The robot starts from the same position in the lower right part of the figures.
The dotted paths show the robot’s paths under the control of the two algorithms.

The servo tracker loses the target at step 23, whereas the vantage tracker contin-
ues until we stop the simulation at step 46, at which time the target is still visible.
The SDE plots, in Fig.11c, show that the two trackers have comparable performance
until around step 20. After that, the SDE for the servo tracker drops to 0, while the
vantage tracker still maintains good SDE values and is able to continue tracking the
target. The reason behind the success of the vantage tracker becomes clearer when
we look at Fig.11d, which plots the risk values computed by the vantage tracker at

Motion Planning for 3-D Target Tracking among Obstacles 11

(a) Servo controller (b) Vantage controller

(c) SDE plots for Servo vs. Vantage (d) Risk and SDE plot of Vantage

Fig. 11. Experimental Results

each step. We see that the risk values peak for certain steps. Careful inspection re-
veals that such peaks occur whenever the target turns around a corner. For example,
the target turns right sharply in steps 15–20, then again around step 30, and we have
peaks in the risk plot accordingly. From the peaked risk values, the vantage tracker
perceives the danger of losing the target in the near future and moves to reduce it,
thereby successfully keeping the target visible. The servo tracker does not consider
the effect of occlusion by obstacles and loses the target.

6 Conclusion
This paper proposes an online algorithm for 3-D target tracking among obstacles. It
uses a carefully defined risk function to reason about robot actions in order to balance
between short and long term benefits. As the algorithm uses only local geometric in-
formation available to the robot’s visual sensors, it does not require a global map
and thus bypasses the difficulty of localization with respect to a global map. Further-
more, uncertainty in sensing and motion control does not accumulate, because the
robot’s action is computed using sensor data acquired in the current step only. This
improves the reliability of tracking. Simulation results show that the new algorithm
generated interesting tracking behaviors in 3-D and performed substantially better
than an algorithm based on visual servo control.

Currently, we are extending the algorithm for more realistic sensor models, in
particular, by incorporating field of view (FoV) constraints. Like range constraints,
FoV constraints are different in nature from occlusion constraints, because they result

12 Tirthankar Bandyopadhyay, Marcelo H. Ang Jr., and David Hsu

from the sensor limitations and cannot be eliminated through robot motion. FoV
constraints are modeled as pseudo occlusion surfaces, and the risk is calculated based
on the time of escape of the target rather than the vantage time. We are also improving
the robot motion models by taking into account the kinematics and dynamics of the
robot. For example, non-holonomic motion limits the space of feasible velocities
available to the robot and can be incorporated as constraints when the robot chooses
its action. Our implementation of visibility region extraction from 3-D laser data can
also be significantly improved by using advanced techniques from computer vision.

References
1. T. Bandyopadhyay, Y. Li, M. Ang Jr., and D. Hsu. A greedy strategy for tracking a locally

predictable target among obstacles. In Proc. IEEE Int. Conf. on Robotics & Automation,
pages 2342–2347, 2006.

2. F. Durand, G. Drettakis, and C. Puech. The 3d visibility complex. In ACM Trans. on
Graphics, volume 21(2), pages 176–206. ACM Press, April 2002.

3. A. Efrat, H. González-Baños, S. Kobourov, and L. Palaniappan. Optimal strategies to
track and capture a predictable target. In Proc. IEEE. Int. Conf. on Robotics & Automa-
tion, pages 3789–3796, 2003.

4. H. González-Baños, C.-Y. Lee, and J.-C. Latombe. Real-time combinatorial tracking of
a target moving unpredictably among obstacles. In Proc. IEEE Int. Conf. on Robotics &
Automation, pages 1683–1690, 2002.

5. S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo control. IEEE Trans.
on Robotics & Automation, 12(5):651–670, 1996.

6. D. Huttenlocher, J. Noh, and W. Rucklidge. Tracking non-rigid objects in complex scenes.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 93–101, 1993.

7. J. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.
8. S. LaValle, H. González-Baños, C. Becker, and J. Latombe. Motion strategies for main-

taining visibility of a moving target. In Proc. IEEE Int. Conf. on Robotics & Automation,
pages 731–736, 1997.

9. S. Lazebnik. Visibility-based pursuit-evasion in three-dimensional environments. Beck-
man CVR TR, 2001.

10. J. Maver and R. Bajcsy. Occlusions as a guide for planning the next view. IEEE Trans.
on Pattern Analysis & Machine Intelligence, 15(5):417–433, 1993.

11. L. O. Mejias, S. Saripalli, P. Cervera, and G. S. Sukhatme. Visual servoing of an au-
tonomous helicopter in urban areas using feature tracking. Journal of Field Robotics,
23(3):185–199, 2006.

12. R. Murrieta-Cid, González-Baños, and B. Tovar. A reactive motion planner to maintain
visibility of unpredictable targets. In Proc. IEEE Int. Conf. on Robotics & Automation,
pages 4242–4248, 2002.

13. R. Murrieta-Cid and S. Hutchinson. Surveillance strategies for a pursuer with finite sensor
range. Int. J. Robotics Research, 26(3):233–253, 2007.

14. H. Plantinga and C. Dyer. Visibility, occlusion, and the aspect graph. Int. J. Computer
Vision, 5(2):137–160, 1990.

15. T. Song and T. Um. Practical guidance for homing missiles iwth bearings-only measure-
ments. IEEE Tran. on Aerospace & Electronic Systems, 32:434–443, 1996.

16. R. Vidal, O. Shakernia, H. Kim, D. Shim, and S. Sastry. Probabilistic pursuit-evasion
games: theory, implementation, and experimental evaluation. IEEE Trans. on Robotics
and Automation, 18(5):662 – 669, Oct. 2002.

17. http://playerstage.sourceforge.net.

