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Abstract— Probabilistic Roadmap (PRM) planners have
been successful in path planning of robots with many degrees
of freedom, but they behave poorly when a robot’s configu-
ration space contains narrow passages. This paper presents
workspace importance sampling(WIS), a new sampling strat-
egy for PRM planning. Our main idea is to use geometric
information from a robot’s workspace as “importance” values
to guide sampling in the corresponding configuration space.
By doing so, WIS increases the sampling density in narrow
passages and decreases the sampling density in wide-open
regions. We tested the new planner on rigid-body and
articulated robots in 2-D and 3-D environments. Experimental
results show that WIS improves the planner’s performance
for path planning problems with narrow passages.

I. I NTRODUCTION

In recent years, probabilistic roadmap (PRM) planning
has emerged as one of the most successful approaches for
path planning of robots with many degrees of freedom
(dofs) [1], [6], [7], [10], [12], [16], [18], [19]. A classic
multi-query PRM planner [16] samples points uniformly
at random in a robot’s configuration space, and connects
these points with simple collision-free paths to construct
a roadmap graph that approximates the connectivity of
a robot’s configuration space. The planner then answers
path-planning queries by searching the roadmap for a path
between query configurations. Due to their efficiency and
simplicity, PRM planners have found applications in many
areas, such as robotics, computer-aided design, computer
graphics, and computational biology (see,e.g., [2], [4], [8],
[17]).

Despite their successes, PRM planners behave poorly
when a robot’s configuration space contains narrow pas-
sages [12], [16]. A narrow passage is a small region whose
removal changes the connectivity of the configuration
space. The probability of sampling points at random in
narrow passages is low, because narrow passages have
small volumes. This makes it difficult for PRM planners
to capture the connectivity of the configuration space well,
when narrow passages are present.

In this paper, we propose a new sampling strategy to
address the narrow passage problem in PRM planning.
The intuition is that narrow passages in a robot’s con-
figuration space are often caused by narrow passages in
the workspace. We decompose the workspace via tetrahe-
dralization to locate workspace narrow passages and use
the geometric information from the workspace as heuristic
importance values to guide sampling in the corresponding
configuration space. Our goal is to increase the probability
of sampling free configurations in narrow passages, which

is critical for capturing the connectivity of the free space,
and to decrease the probability of sampling free configura-
tions in wide-open collision-free regions. We call this new
sampling strategyworkspace importance sampling(WIS),
because it is related to importance sampling used in Monte
Carlo integration [15].

In the rest of the paper, Section II briefly reviews
related work. Section III gives an overview of our planner.
Section IV describes WIS in detail. Section V reports
experimental results. Section VI summarizes our main
results and gives direction for future research.

II. RELATED WORK

Several PRM planners have been proposed to deal
with the narrow passage problem, including dilated free
space [13], OBPRM [1], and MAPRM [24]. Unfortunately,
these planners require geometric computation that is ex-
pensive to implement in high dimensional configuration
spaces. The Gaussian sampler [7] and the hybrid bridge
test [14], which rely heavily on rejection sampling, are
much simpler to implement in high dimensional configu-
ration spaces. However, their performance degrades when
the narrow passages have extremely small volumes, which
lead to high rejection ratio.

Instead of performing geometric computation on the
configuration space, some earlier work has explored the
idea of using workspace information. For example, to
compute the motion for a rigid-body robot, one may con-
struct the medial axis of the workspace and then samples
configurations that place the robot close to the medial
axis [11]. Another possibility is to use the medial axis to
find a path for a reference point on the rigid-body robot and
then “refine” the path to obtain the full translational and
rotational motion of the robot [10]. Of course, the refine-
ment may not always succeed. Inspired by the watershed
segmentation method from image processing, the recent
work of van den Berg and Oversmars tries to identify large
collision-free regions in the workspace and label the space
connecting such regions as narrow passages [23]. It then
adjusts the sampling distribution accordingly. This method
is effective when the narrow passages are short and are
located between two large collision-free regions.

Our planner uses workspace information, too. It com-
putes a tetrahedralization of the workspace and uses the
tetrahedralization to locate narrow passages and guide
sampling in the configuration space.



Fig. 1. A Delaunay triangulation ofW′ in a 2-D workspace.

III. PRELIMINARIES ON PRM PLANNING

The configurationof a robot is a set of parameters that
uniquely determines the position of every point on the
robot. The set of all configurations forms theconfiguration
spaceC, and a configuration is represented as a point in
C. A configurationq is collision-free or free if the robot
placed atq does not collide with obstacles in the workspace
or with itself. The free configurations form a subsetF of
C.

Like most multi-query PRM variants, our planner con-
sists of two phases, a pre-computation phase and a query
phase. In the pre-computation phase, the planner constructs
a roadmap graphG to capture the connectivity ofF . It
incrementally samples a set of collision-free configurations,
calledmilestones, from C using WIS. For every milestoneq
obtained, it insertsq into G as a new node and then checks
whether q can be connected with nearby existing mile-
stones via collision-free straight-line paths. If such a path
exists between two milestones, the planner adds an edge
between them inG. In the query phase, the planner is given
an initial and a goal configuration. It tries to connect the
two query configurations to two corresponding milestones
in G and then searches for a path inG between these two
milestones, using standard graph search algorithms. See
[16] for more details on PRM planning.

IV. WORKSPACEIMPORTANCESAMPLING

Narrow passages inC are small regions critical for
preserving the connectivity ofF . Removing these small
regions may change the way different parts ofF are
connected or even the number of connected components.
To capture the connectivity ofF well, it is important for
PRM planners to sample free configurations in narrow
passages. This is difficult, because narrow passages have
small volumes. Any volume-based sampling strategy is
unlikely to perform well. Furthermore, in general, we do
not have an explicit representation ofC and cannot process
its geometry easily to locate the narrow passages.

However, narrow passages in the configuration space
C are often caused by narrow passages in the workspace
spaceW. The main idea of WIS is to locate narrow pas-
sages inW and use this information to guide sampling in
the corresponding regions ofC. Locating narrow passages
in W is simpler because we have an explicit geometric
representation of the 2-D or 3-D workspace.

(a) (b) (c)

Fig. 2. Defining the importance valueh(t) of a trianglet in a 2-D
workspace. There are three cases: (a) one edge, (b) two edges, and (c) no
edge on the boundary ofW′.

A. Locating Workspace Narrow Passages

Let W ′ be the subset ofW that is not occupied by
obstacles. To locate narrow passages inW, we would like
to compute a tetrahedralization ofW ′ by treatingW ′ as
a polyhedron. However, it is known that not all polyhedra
can be tetrahedralized [22]. To avoid this difficulty, we
sample points at a fixed resolution on the boundary ofW ′,
using an algorithm similar to scan conversion in computer
graphics [9], and compute a Delaunay tetrahedralizationT
over the set of sampled points. See Fig. 1 for an example in
a 2-D workspace. If the sampling resolution is sufficiently
high, then under reasonable geometric assumptions,T is
conformal in the sense that every face on the boundary
of W ′ is a union of faces inT [3], and hence every
tetrahedron inT is in eitherW ′ or its complement. Let
T ′ denote the subset of all tetrahedra inW ′.

Next we assign an importance valueh(t) to every
tetrahedront in T ′. Fig. 1 seems to indicate that tetrahedra
in narrow passages have small sizes, but because of bad
tetrahedra (e.g., slivers and skinny tetrahedra), neither
volume nor edge length is a good measure of size here.
Instead, we use the average height oft to define the
importanceh(t). A tetrahedront has four heightshi for
i = 1, 2, 3, 4, each corresponding to a facefi of t. Only
those heights that give an estimate of the local “width”
of F are relevant. We thus define the importanceh(t) as
follows:

• If t has one or more faces lying on the boundary of
W ′, then

h(t) =
∑4

i=1 βihi∑4
i=1 βi

,

whereβi is 1 if fi lies on the boundary ofW ′ and 0
otherwise.

• If t has none of its faces lying on the boundary of
W ′, thenh(t) =

∑4
i=1 hi/4.

See Fig. 2 for illustrations of the corresponding definition
in 2-D. A small value ofh(t) indicates thatt likely lies in
a narrow passage, and more effort is needed to sample the
corresponding region inC. According to this definition, a
skinny tetrahedront, like the one shown in Fig. 2a, has
a large value ofh(t). This indicates thatt is not inside a
narrow passage.



We now use the importance values to sample the config-
uration space of two common types of robots, rigid-body
robots and articulated robots in 3-D workspaces.

B. Rigid-Body Robots in 3-D Workspaces

The configuration of a rigid-body robot consists of
a positional componentqτ , which specifies the position
of a reference point on the robot, and an orientational
componentqθ, which specifies the orientation of the robot.

To sample a new milestone, we pick a tetrahedront
uniformly at random fromT ′, and then sample a maximum
of nt times in the region of configuration space that
corresponds tot, until we obtain a free configuration. The
positional componentqτ and the rotational componentqθ

are sampled independently. Forqτ , we pick a point uni-
formly at random fromt. For qθ, we sample an orientation
in 3-D uniformly at random using quaternions [21].

The maximum numbernt of trials for sampling a free
configuration from a tetrahedront depends onh(t), the
importance oft. Assume that the probabilityp of getting
a milestone,i.e., a free configuration, fort is proportional
to h(t). The probabilityα of getting a milestone afternt

trials is given by

α = 1− (1− p)nt . (1)

Now we normalizeh(t) and setp = h(t)/htotal, where
htotal =

∑
t h(t). It follows from (1) that

nt =
ln(1− α)

ln(1− h(t)/htotal)
. (2)

The parameterα reflects our eagerness in obtaining one
milestone for each tetrahedron, or the confidence level that
there is at least one milestone that can be obtained for each
tetrahedron.

A complete description of the algorithm is given in
Algorithm 1. This algorithm calls a function IsFree(q) to
determine whether a configurationq is collision-free. Is-
Free is implemented using a hierarchical collision detection
algorithm [20].

The goal of WIS is to bias the sampling distribution
towards narrow passages. It tries to achieve this by sam-
pling the tetrahedra uniformly at random. Tetrahedra inside
narrow passages tend to have small volumes. Thus, there
are more tetrahedra per unit volume in narrow passages
than in other regions, thereby increasing the sampling den-
sity inside narrow passages. However, this is not enough.
Depending on the robot’s size and shape, it may be more
difficult to obtain a free configuration for a tetrahedron in
a narrow passage. Therefore, we samplent times for each
tetrahedront chosen, withnt depending on the importance
valueh(t).

C. Articulated Robots in 3D Workspaces

For common articulated robots, such as PUMA and
FANUC arms, WIS works similarly as it does for rigid-
body robots, but the way it samples the robot’s configu-
ration space is slightly different. For an articulated robot,
the positional componentqτ specifies the joint angles that
determine the position of the robot’s wrist point, and the

Algorithm 1 WIS for rigid-body robots.
1: LetW ′ be the subset ofW that is not occupied by obstacles.

Sample with sufficient density a set of pointsS on the
boundary ofW ′. Compute a tetrahedralizationT ′ of S.

2: For each tetrahedront in T ′, calculatent based on the
importanceh(t) of t.

3: loop
4: Pick a tetrahedront uniformly at random fromT ′.
5: MaxNumTrials← nt.
6: NumTrials← 0.
7: repeat
8: Pick the positional componentqτ by sampling a point

uniformly at random fromt.
9: Pick the orientational componentqθ by sampling an

orientation in 3-D uniformly at random.
10: q ← (qτ , qθ).
11: NumTrials← NumTrials + 1.
12: until IsFree(q) or NumTrials≥ MaxNumTrials.
13: if a collision-free configurationq is obtainedthen
14: Add q to the roadmapG as a new milestone.
15: for every milestoneq′ in G within a distancer from q,

wherer is a fixed constantdo
16: Check whetherq and q′ can be connected via a

collision-free straight-line path. If so, add an edge
betweenq andq′ in G.

orientational componentqθ specifies the orientation of the
wrist. A point sampled from a tetrahedront only specifies
the position of the robot’s wrist point and notqτ . Hence,
after sampling a positionx of the robot’s wrist point
uniformly at random from a tetrahedront, we need to
solve the robot’s inverse kinematics equations to getqτ that
places the robot’s wrist point atx. If the number of inverse
kinematics solutions is large or infinite, WIS samples a
few at random. It then samplesqθ by picking uniformly at
random the joint angles that control the orientation of the
wrist.

D. Running Time

The total running time of WIS consists of three parts: the
time Tt for tetrahedralizingW ′, the timeTs for sampling
milestones, and the timeTc for checking collision-free
connections between milestones in the roadmap. Compared
with other PRM variants, WIS pays the additional cost of
sampling the boundary ofW ′ and computing the tetrahe-
dralization. Suppose that there aren sampled points on the
boundary ofW ′. The cost of tetrahedralization isO(n2) in
the worst case, but in practice, we can expectO(n lg n) [3].
In addition, it is well-known thatTc usually dominates the
total running time of PRM planners. By paying a relatively
small cost of tetrahedralization, we reduce the number of
milestones needed and hence the timeTc for connecting
the milestones, thereby reducing the total running time.

E. Limitations

WIS uses only workspace information to locate narrow
passages and ignores the geometry of the robot. This
sometimes leads to false positive results. Some regions
of the workspace with high importance values are so
narrow that the robot simply cannot pass through. Sampling
densely in these regions is clearly counter-productive. A



possible improvement is to try to roughly estimate the
smallest passage that the robot can pass through.

Furthermore, WIS currently uses workspace information
for sampling the positional component of the configuration
space only. It uses uniform sampling for the orientational
component. When the robot has a complex shape and
must reorient frequently in order to wiggle through narrow
passages, the performance of WIS suffers, because more
milestones are needed to take care of orientation changes.
To deal with this problem, one possibility is to sample more
milestones for tetrahedra with high importance values.
Another possibility is to analyze the geometry of the robot
and combine this information with workspace information
to bias sampling in the orientational component as well.

V. I MPLEMENTATION AND EXPERIMENTS

We implemented WIS and tested it on both rigid-body
and articulated robots. For each test environment, we must
determine the resolution for sampling the boundary ofW ′

in order to compute a tetrahedralization ofW ′. We set
the resolution to be high enough so that under reasonable
geometric assumptions, the resulting tetrahedralization is
conformal. The tetrahedralization is computed using the
Quickhull algorithm [5]. During the roadmap construction,
we try to connect each new milestoneq to other existing
milestones whose normalized distance toq is less than 0.15.

For comparison, we also implemented two PRM plan-
ners using the uniform sampler [16] and the hybrid bridge
test (HBT) [14]. The uniform sampler was used as a
reference to measure the performance improvement of
WIS and HBT. HBT was chosen because it has shown
good performance for path planning problems with narrow
passages. For HBT, we used1 : 1 as the relative weight
for mixing two component samplers—the uniform sampler
and the bridge test. In other words, the component samplers
were equally weighted in HBT. We also performed trial
runs to set the parameters of the bridge test so that HBT
had good performance.

We ran the three planners on a number of different
test environments. For each environment, we manually
specified one or more queries such that solving these
queries indicates that a roadmap captures the connectivity
of the free space well. Each test run was repeated 30 times
independently, and the results were averaged. For each test
environment below, we show a graph that plots the average
percentage of queries that a planner can answer correctly
as the running time increases. The measured running time
includes all the time needed for preprocessing, such as
samplingW ′ and building a hierarchical representation for
collision detection. Our program was implemented in C++.
The tests were performed on an Intel P4 1.6GHz PC with
256MB RAM.
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Test 1: This planar workspace consists of four chambers
connected with narrow passages. The robot is a rigid body
that translates and rotates freely with three dofs in total.
There are four specified queries: (A, B), (B, C), (C, D),
and (D, A), where A, B, C, and D are the corresponding
workspace regions of the query configurations (see the
above figure). WIS outperforms HBT in this test, because
the workspace information helps WIS to locate narrow
passages more efficiently.

����

�����

�����

�����

�����

�����

�����

	����


����

����� ����� ����� 
���� ������ ������ ������ ������ �
���� ������ ������ ������ ������

��������
	


�
�
�
�
�
��

��
��
�
�

��������������

���

���

Test 2: This workspace consists of many regions con-
nected with narrow passages. The robot is again a rigid
body with three dofs. There are ten specified queries: (A,
B), (A, C), (B, D), (D, C), (D, E), (D, F), (E, F), (E,
I), (F, G), and (F, H). To capture the correct connectivity
of the free space, a planner must sample from all regions
of the free space. WIS performs well here, because the
tetrahedralization helps to distribute the samples over all
the regions and cover the free space well.

Although there are false positive narrow passages be-
tween B and E and between A and C, their effects here
are not significant. The reason is that the width of these
passages is similar to that of the true narrow passages.
As a result, the weights of the triangles inside the false
positive regions are similar to those inside the true narrow
passages, and the false positive regions are not significantly
over-sampled. Therefore, they do not affect the overall
performance significantly in this case. Of course, in other
workspaces, the effects of false positives could be much
more significant.
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Test 3: Here the workspace consists of six vertical
chambers connected with narrow openings. The robot is a
rigid body with three dofs in total. There are five specified



queries: (A, B), (B, C), (C, D), (D, E), and (E, F).

HBT performs better than WIS in this case, because the
robot has a relatively complex shape and must execute
several maneuvers to reorient and wiggle through the
narrow openings. As we have mentioned in Section IV-E,
WIS samples orientations uniformly, and is less effective
when complex reorientations are required. See the circled
regions in Fig. 3 for a comparison of the three planners.

uniform sampler HBT

WIS

Fig. 3. Comparing the sampling distributions of three planners.
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Test 4: This is a classic example for testing path
planning algorithms. The 3-D workspace consists of eight
chambers and seven narrow openings connecting adjacent
chambers. The robot is a rigid body translating and rotating
freely with six dofs in total. We specified seven queries,
one for each opening.

Although this test can be seen as a 3-D version of
Test 3, the performance of WIS is comparable to HBT.
The reason is that compared to Test 3, the narrow openings
here are still relatively large with respect to the size of the
robot. Thus, WIS can sample the orientations of the robot
uniformly at random and still obtain enough collision-free
configurations in the narrow openings.
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Test 5: We also considered the modified alpha puzzle
environment used in[1]. As in [1], the puzzle was simplified
by slightly increasing the size of the narrow opening on
the alpha-shaped tubes. WIS performs very well, because
the workspace information helps WIS to locate narrow
passages efficiently.
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Test 6: This 3-D workspace consists of horizontal and
vertical bars to obstruct the motion of the robot. The robot
is a six-dofs FANUC arm. We specified 12 queries. Each
query requires the robot to move its end-effector from one
opening between the bars to another. To answer a query, the
robot must pull its end-effector out of a narrow opening,
move in relatively open free space, and reinsert the end-
effector into another narrow opening.
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Test 7: This workspace has complex geometry, but does
not contain any narrow passages. One concern about WIS is
the preprocessing time for computing the tetrahedralization
of W ′. This test shows that even in an environment with
complex geometry (224,403 triangles), the preprocessing
time needed for tetrahedralization does not have a signifi-
cant impact on the total running time.

Overall WIS performs well when the environment con-
tains very narrow passages, but does not require difficult
reorientation of the robot to pass through the narrow
passages. Since we setnt to be dependent on the impor-
tance valueh(t) (see IV-B), the probability of sampling a
free configuration corresponding to any tetrahedront ∈
T ′ is roughly the same, regardless oft’s size. Hence,
the sampling distribution constructed by WIS is roughly
proportional to the number of tetrahedra per unit volume,
rather than the volume itself. This effectively increases the
sampling density inside narrow passages, because narrow
passages in the workspace usually contain many tetrahedra
with small volumes.

VI. CONCLUSION AND FUTURE WORK

We have presented workspace importance sampling, a
new sampling strategy for PRM planning. WIS tetrahe-
dralizes the workspace and uses the workspace information
to locate narrow passages and guide sampling in the con-
figuration space. By doing so, WIS increases the sampling
density in narrow passages and decreases that in wide-open
regions. We conducted experiments with WIS on rigid-
body and articulated robots in 2-D and 3-D workspaces.
Our results show that WIS improves the performance of
PRM planning when narrow passages are present.

There are several aspects of WIS that need improvement,
both in algorithm development and in implementation.
Shape analysis of the robot may help to improve the
sampling of orientations and to identify workspace narrow
passages too small for the robot to pass through, as we
have discussed in Section IV-E. It may also be beneficial
to combine WIS with other sampling strategies to construct
a hybrid sampling strategy.
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