Covering Number for Efficient Heuristic-Based POMDP Planning

Zongzhang Zhang ZHANGZZ@COMP.NUS.EDU.SG **David Hsu** DYHSU@COMP.NUS.EDU.SG Wee Sun Lee Department of Computer Science, National University of Singapore, Singapore 117417, Singapore

LEEWS@COMP.NUS.EDU.SG

Abstract

The difficulty of POMDP planning depends on the size of the search space involved. Heuristics are often used to reduce the search space size and improve computational efficiency; however, there are few theoretical bounds on their effectiveness. In this paper, we use the covering number to characterize the size of the search space reachable under heuristics and connect the complexity of POMDP planning to the effectiveness of heuristics. With insights from the theoretical analysis, we have developed a practical POMDP algorithm, Packing-Guided Value Iteration (PGVI). Empirically, PGVI is competitive with the state-of-the-art point-based POMDP algorithms on 65 small benchmark problems and outperforms them on 4 larger problems.

1. Introduction

Partially observable Markov decision processes (POMDPs) provide a rich mathematical model for planning under uncertainty (Kaelbling et al., 1998). However, POMDPs are computationally intractable to solve exactly (Madani et al., 1999). In the past decade, enormous progress has been made in computing approximate POMDP solutions (Pineau et al., 2003; Smith & Simmons, 2005; Kurniawati et al., 2008; Ross et al., 2008; Bonet & Geffner, 2009; Silver & Veness, 2010; Zhang & Chen, 2012; Grześ et al., 2013; Shani et al., 2013).

On the theoretical front, the covering number of the reachable space has been proposed to quantify the complexity of POMDP planning (Hsu et al., 2007), particularly, for point-based methods (Smith & Simmons, 2005; Pineau et al., 2006; Shani et al., 2007; Kurniawati et al., 2008; Shani et al., 2013). Intuitively, the covering number is the minimum number of fixed-size balls required to cover the search space so that all points in the search space lie within some ball. Both theoretical and empirical results support the covering number as a promising complexity measure for POMDP planning and learning (Hsu et al., 2007; Zhang et al., 2012).

In practice, many well-known POMDP planning algorithms use the lower and upper bounds of the optimal value function (Hauskrecht, 2000; Smith & Simmons, 2005; Kurniawati et al., 2008), or just the upper bound as heuristics (Hauskrecht, 2000; Bonet & Geffner, 2009) in guiding the search towards the optimally reachable space. Although these algorithms have made impressive progress in computing approximate solutions by using heuristics and have been successfully applied in several practical domains (Hsiao et al., 2007; Pineau et al., 2006; Hsu et al., 2008; Kurniawati et al., 2011; Grześ et al., 2013), few existing works have analyzed the relationship between the quality of the heuristics and the complexity of POMDP planning.

In this paper, we fill this gap by connecting the size of search spaces reachable under heuristic, as measured by the covering number, to the complexity of POMDP planning. We consider two cases, when only an upper bound heuristic is available and when both upper and lower bound heuristics are available. We show that an ϵ -optimal solution can be computed in time *polynomial* in the covering number for the both cases. This suggests one avenue of handling practical problems: use domain knowledge to find good upper and lower bounds that effectively reduce the covering number of the reachable space under the heuristics.

One key idea behind our theoretical analysis is to build a separate packing of sampled beliefs at each level of the search tree to control the number of beliefs at level d, so that it does not grow exponentially in d. Packing is closely related to covering and is used to create a covering in the proofs. We exploit this proof idea in building a practical point-based algorithm, Packing-Guided Value Iteration (PGVI). In addition to providing theoretical guarantees, packing helps PGVI to identify interesting parts of the space that is sparsely packed and to sample new beliefs

Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copyright 2014 by the author(s).

and perform point-based backup there. Compared with state-of-the-art point-based POMDP algorithms, PGVI is very efficient on 65 small benchmark problems and 4 larger robotic problems.

2. Preliminaries

A POMDP models an agent taking a sequence of actions in a partially observable stochastic environment to maximize its total reward (Kaelbling et al., 1998). A discrete and discounted POMDP model can be formally defined by a tuple $(S, A, Z, T, \Omega, R, \gamma)$. In the tuple, S, A and Z are the finite and discrete state space, action space, and observation space, respectively. At each time step, the agent takes some action $a \in A$ and moves from a start state s to an end state s'. The end state s' is given by a state-transition function T(s, a, s') : $S \times A \times S \rightarrow [0, 1]$, where T(s, a, s') =Pr(s'|s, a). The agent then makes an observation to gather information on its current state. The outcome of observing $z \in Z$ is given by an observation function $\Omega(a, s', z)$: $A \times S \times Z \rightarrow [0,1]$, where $\Omega(a, s', z) = Pr(z|a, s')$. The reward function R(s,a) : $S \times A \rightarrow \mathbb{R}$ gives the agent a real-value reward after it takes action a in state s. We let $R_{\max} = \max_{s \in S, a \in A} |R(s, a)|$. The last element $\gamma \in$ (0,1) is the discount factor. Thus, the *expected total reward* is given by $\mathbf{E}[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t)]$, where s_t and a_t are the agent's state and action at time t.

A *belief state* (or *belief*) *b* is a discrete probability distribution over the state space, whose element b(s) gives the probability that the system's state is *s*. A belief state space \mathcal{B} is comprised of all possible beliefs. A search space *B* is a subset of \mathcal{B} and can be represented as an AND/OR belief tree T_B rooted at the *initial belief* b_0 . In the tree, nodes and edges correspond to beliefs and action-observation pairs, respectively. Suppose that a child node b', denoted by $\tau(b, a, z)$, is connected to its parent *b* by an edge (a, z). We can compute b' using the Bayesian formula $b'(s') = \frac{1}{Pr(z|b,a)}\Omega(a, s', z)\sum_{s \in S} T(s, a, s')b(s)$, where $Pr(z|b, a) = \sum_{s' \in S} \Omega(a, s', z) \sum_{s \in S} T(s, a, s')b(s)$ (Kaelbling et al., 1998).

A POMDP solution is a policy π that specifies the action $\pi(b)$ for every belief b. Our goal is to find an optimal policy π^* that maximizes the expected total reward. A policy π induces a value function $V^{\pi}(b)$ that specifies the expected total reward of executing π starting from any belief b. The optimal value function $V^*(b)$ is the value function associated with the optimal policy π^* . We define $Q^*(b, a)$ as $\sum_{s \in S} R(s, a)b(s) + \sum_{z \in Z} Pr(z|b, a)V^*(\tau(b, a, z))$, and therefore, have $V^*(b) = \max_{a \in A} Q^*(b, a)$. We denote V^L and V^U as the lower and upper bounds of V^* , respectively. Both V^L and V^U are assumed to be uniformly improvable (Smith, 2007) in this paper, meaning that applying a pointbased update brings them everywhere closer to V^* . We also assume that we are provided with heuristics, f and g, that can provide initial values V_f^L to the lower bound and V_g^U to the upper bound. Similarly, we use Q^L , Q^U , Q_f^L and Q_g^U for the corresponding bounds of Q^* . In practice, the bounds for Q can be constructed from the bounds for V by one step lookahead (Hauskrecht, 2000).

We describe the mathematical definition of the covering number of a set of points as follows:

Definition 1. (*Hsu et al.*, 2007) Given a metric space X, a δ -cover of a set $B \subseteq X$ is a set of points $C \subseteq X$ such that for every point $b \in B$, there is a point $c \in C$ with $||b - c|| \leq \delta$. The δ -covering number of B, denoted by $C_B(\delta)$, is the size of the smallest δ -cover of B.

Intuitively, the covering number is equal to the minimum number of balls of radius δ needed to cover the set B. In this paper, we measure the distance between belief points in an L^1 metric space \mathcal{B} : for $b_1, b_2 \in \mathcal{B}$, $||b_1 - b_2|| = \sum_{s \in S} |b_1 - b_2|$. We refer a belief b's δ -region as a subspace in X that satisfies $||b' - b|| \leq \delta$ for all b' in the region.

We use the covering number to measure the size of belief spaces. The set of beliefs that are reachable from the initial belief b_0 under arbitrary sequences of actions and observations is denoted by $\mathcal{R}(b_0)$. The *optimally reachable belief space* $\mathcal{R}^*(b_0)$ refers to the set of beliefs that are reachable from b_0 under some optimal policy. We denote $\mathcal{C}(\delta)$ as the δ -covering number of $\mathcal{R}(b_0)$, $\mathcal{C}^*(\delta)$ as the δ -covering number of $\mathcal{R}^*(b_0)$, and $\mathcal{T}_{\mathcal{R}}$ as the tree rooted at b_0 consisting of beliefs in the *reachable belief space* $\mathcal{R}(b_0)$.

3. Related Work

Kakade and his colleagues applied the notion of the covering number into reinforcement learning (Kakade et al., 2003). Later, Hsu et al. (2007) extended use of covering number from MDPs to POMDP planning. Recent research work provided empirical evidence that estimated covering number of $\mathcal{R}(b_0)$ was better than the state space size in predicting the difficulty of POMDP planning and learning on small benchmark problems (Zhang et al., 2012).

In (Hsu et al., 2007), the key point of connecting the covering number to POMDP planning complexity is the following: for any two beliefs, if their distance is small, then their optimal values are also similar. Thus, when the value of a belief b is accurate enough, it can be used to estimate the value of beliefs that are close to b with only small error. By stopping the search when it is near to a region that has been searched before, the covering number can be exploited to bound the width of the search tree. Together with the idea of bounding the depth of the search tree by the discount factor, it was shown that an approximately optimal POMDP solution can be computed in time at most *quadratic poly*-

nomial in both $\mathcal{C}(\delta)$ and $\mathcal{C}^*(\delta)$.

In the past decade, point-based value-iteration algorithms have made impressive progress in computing approximate solutions to large POMDPs (Shani et al., 2013). Their success is mainly due to the efficient sampling strategies. Point-Based Value Iteration (PBVI) (Pineau et al., 2003) prefers to sample beliefs that are far away from those sampled beliefs. Heuristic Search Value Iteration (HSVI2) (Smith & Simmons, 2005), SARSOP (Kurniawati et al., 2008) and GapMin (Poupart et al., 2011) sample beliefs by using both the lower and upper bound heuristics. The lower bound is usually obtained by using the blind policy and the upper bound is often initialized by the QMDP or Fast Informed Bound (FIB) method (Hauskrecht, 2000). These algorithms use the action-selection strategy that chooses the action with the highest upper bound. Compared with HSVI2 and SARSOP, GapMin strives to compute tight bounds by performing a prioritized breadth-first search, propagating upper bound improvements, and computing exact interpolations by Linear Programming (LP) (Poupart et al., 2011). However, the idea of using the insight from the covering number to control the width of the search tree has not been exploited in the three state-of-the-art algorithms. The performance guarantee for HSVI2, provided in (Smith, 2007), is $O(h \cdot |A|^h |Z|^h)$, where h is the height of the search tree. It is essentially the time required to search the whole depth-bounded search tree.

4. Complexity of Heuristic-Based POMDP Planning

We examine the complexity of POMDP planning when various heuristics are used. We show that these heuristics can be used to define various search spaces and that approximately optimal POMDP solutions can be found in time polynomial in the covering number of these search spaces.

We start with insights from practical POMDP algorithms such as HSVI2 and SARSOP. These algorithms are *action optimistic* – they select actions with the highest Q^U during the search process. Since $V^*(b) \leq \max_{a \in A} Q^U(b, a)$ and Q^U is uniformly improvable, we know that action optimistic algorithms have zero probability of visiting beliefs under the action branch *a* that satisfies $Q_g^U(b, a) < V^*(b)$. This allows us to define the search space reachable under action optimistic algorithms with heuristic g, $\mathcal{R}_g^U(b_0)$, as the set of beliefs *b* that can be reached from b_0 by taking action branches *a* that satisfy $Q_g^U(b, a) \ge V^*(b)$.

The size of $\mathcal{R}_g^U(b_0)$ gives a reasonable indication of the complexity of solving the POMDP exactly. However, we would like to approximate in two ways: by fixing the depth of the search tree and by interpolating the values of nearby beliefs to take advantage of the Lipschitz property. We

define $C_g^U(\delta)$ as the δ -covering number of $\mathcal{R}_g^U(b_0)$. Interestingly, approximately optimal POMDP solutions can be found in time polynomial in $C_g^U(\delta)$. As $C_g^U(\delta)$ depends on Q_g^U , the covering number of the space reachable under action optimistic algorithms is a reasonable measure of the quality of the heuristic. Note also that $\mathcal{R}_g^U(b_0)$ becomes $\mathcal{R}^*(b_0)$ if we use Q^* as our heuristic, hence the covering number converges to the covering number of $\mathcal{R}^*(b_0)$ as the quality of the heuristic improves.

Theorem 1. Given any constant $\epsilon > 0$ and any initial belief $b_0 \in \mathcal{B}$. Let $\mathcal{C}_g^U(\delta)$ be the δ -covering number of $\mathcal{R}_g^U(b_0)$. Then, an approximation $V(b_0)$ of $V^*(b_0)$, with error $|V^*(b_0) - V(b_0)| \leq \epsilon$, can be found in time $O(h \cdot \mathcal{C}_g^U(\delta/2)^2)$, where $h = \log_{\gamma} \frac{(1-\gamma)\epsilon}{2R_{\max}}$, $\delta = \frac{(1-\gamma)^2\epsilon}{2\gamma R_{\max}}$ and $Q_g^U(b, a)$ is used for the initial upper bound.

Before proving Theorem 1, we state two lemmas from (Hsu et al., 2007). The first lemma states that the optimal value function V^* satisfies the following Lipschitz condition:

Lemma 1. (*Hsu et al.*, 2007) For any two belief points b and b', if $||b - b'|| \leq \delta$, then $|V^*(b) - V^*(b')| \leq \frac{R_{\max}}{1 - \gamma} \delta$.

The second one is related to the packing number, a notion closely related to the covering number:

Definition 2. Given a metric space X, a δ -packing of a set $B \subseteq X$ is a set of points P in B such that for any two points $p_1, p_2 \in P$, $||p_1 - p_2|| > \delta$. The δ -packing number of a set B, denoted $\mathcal{P}_B(\delta)$, is the size of the largest δ -packing of B.

For any set *B*, the following relationship holds between its packing number and covering number.

Lemma 2. (*Hsu et al.*, 2007) $C_B(\delta) \leq \mathcal{P}_B(\delta) \leq C_B(\delta/2)$.

Proof. (of Theorem 1) To prove the result, we give an algorithm that computes the required approximation. It performs a depth-first search on a depth-bounded belief tree and uses approximate memorization to avoid unnecessarily computing the values of very similar beliefs. Intuitively, to achieve a polynomial time algorithm, we bound the height of the tree by using the discount factor and bound the width of the tree by exploiting the covering number.

We perform the depth-first search recursively on $\mathcal{T}_{\mathcal{R}}$ that has root b_0 and height h, while maintaining a δ -packing at *every* level of $\mathcal{T}_{\mathcal{R}}$. By convention, the root node is at level 0 and the leaf nodes are at level h. Each leaf node b_l is initialized with estimated value $V(b_l) = 0$. At an internal node b, we first check if b is within a distance δ of a point b' in the current packing at level i. If it is we set the estimate V(b) = V(b'), abort the recursion at b, and backtrack. Otherwise, we add b to the packing, sort the actions using $Q_g^U(b, a)$ and explore the actions according to the sorted order, with the larger values searched earlier. The estimate V(b) is initialized to the value returned by searching the first action and updated each time searching a new action, which returns an improved value, until $Q_g^U(b,a) < V(b) + \frac{\epsilon}{2\gamma^i} + \frac{\epsilon(1-\gamma^{h-i})}{2}$.

We now prove that $|V^*(b) - V(b)| \leq \frac{\epsilon}{2\gamma^i} + \frac{\epsilon(1-\gamma^{h-i})}{2}$ after the update operations are completed at any b at level i of $\mathcal{T}_{\mathcal{R}}$. Following (Hsu et al., 2007), we prove that $|V(b) - V^*(b)| \leq \frac{\gamma R_{\max}(1-\gamma^{h-i})}{(1-\gamma)^2}\delta + \gamma^{h-i}\frac{R_{\max}}{1-\gamma}$. This gives $|V^*(b) - V(b)| \leq \frac{\epsilon}{2\gamma^i} + \frac{\epsilon(1-\gamma^{h-i})}{2}$ by setting $h = \log_{\gamma}\frac{(1-\gamma)\epsilon}{2R_{\max}}$ and $\delta = \frac{(1-\gamma)^2\epsilon}{2\gamma R_{\max}}$.

Let $\epsilon_i = |V(b) - V^*(b)|$ be the approximation error for a node b at level i of $\mathcal{T}_{\mathcal{R}}$, if search is not aborted at b. Let ϵ'_i be the error for b, if the search aborts at b and sets V(b) = V(b') for some b' in the packing at level i. We have

$$\begin{aligned} \epsilon'_i &= |V^*(b) - V(b')| \\ &\leq |V^*(b) - V^*(b')| + |V^*(b') - V(b')| \\ &\leq \frac{R_{\max}}{1 - \gamma} \delta + \epsilon_i, \end{aligned}$$

where the last inequality uses Lemma 1 and the definition of ϵ_i . At the leaves, we set the estimated value to 0, hence $\epsilon_h \leq R_{\max}/(1-\gamma)$. The children of b, which are at level i-1, have error at most ϵ'_{i-1} . We do a proof by induction. Assume that, at level i+1, $|V(b) - V^*(b)| \leq \frac{\gamma R_{\max}(1-\gamma^{h-i-1})}{(1-\gamma)^2}\delta + \gamma^{h-i-1}\frac{R_{\max}}{1-\gamma}$. For every action a that we search at level i, we have

$$\begin{aligned} &|Q(b,a) - Q^*(b,a)| \\ &\leq \quad \gamma \left(\frac{\gamma R_{\max}(1 - \gamma^{h-i-1})}{(1 - \gamma)^2} \delta + (\delta + \gamma^{h-i-1}) \frac{R_{\max}}{1 - \gamma} \right) \\ &= \quad \frac{\gamma R_{\max}(1 - \gamma^{h-i})}{(1 - \gamma)^2} \delta + \gamma^{h-i} \frac{R_{\max}}{1 - \gamma} \\ &= \quad \frac{\epsilon}{2\gamma^i} + \frac{\epsilon(1 - \gamma^{h-i})}{2} \end{aligned}$$

when we set $h = \log_{\gamma} \frac{(1-\gamma)\epsilon}{2R_{\max}}$ and $\delta = \frac{(1-\gamma)^2\epsilon}{2\gamma R_{\max}}$.

Each action is backed up in sorted order until $Q_g^U(b,a) < V(b) + \frac{\epsilon}{2\gamma^i} + \frac{\epsilon(1-\gamma^{h-i})}{2}$, where the right hand side is the current upper bound on $V^*(b)$. Because the remaining actions a' have $Q_g^U(b,a') \leq Q_g^U(b,a)$, we know for sure that $V^*(b) \leq V(b) + \frac{\epsilon}{2\gamma^i} + \frac{\epsilon(1-\gamma^{h-i})}{2}$. At the same time, any action a that has been searched establishes that $V^*(b) \geq Q(b,a) - \frac{\epsilon}{2\gamma^i} - \frac{\epsilon(1-\gamma^{h-i})}{2}$. As V(b) is the value of the largest Q(b,a) found so far, we have $V^*(b) \geq V(b) - \frac{\epsilon}{2\gamma^i} - \frac{\epsilon(1-\gamma^{h-i})}{2}$. Taken together, this implies $|V^*(b) - V(b)| \leq \frac{\epsilon}{2\gamma^i} + \frac{\epsilon(1-\gamma^{h-i})}{2}$.

Finally, we calculate the running time of the algorithm. We first note that $V^*(b) \leq V(b) + \frac{\epsilon}{2\gamma^i} + \frac{\epsilon(1-\gamma^{h-i})}{2}$, hence we

will never search an action for which $Q_a^U(b,a) < V^*(b)$. This implies that the number of elements in the packing at each level is bounded by the packing number of $\mathcal{R}_{a}^{U}(b_{0})$. For each node b in the packing of $\mathcal{R}_{a}^{U}(b_{0})$ is expanded and it takes $O(|A| \log |A|)$ time to determine the search order of action branches. Then, it calculates the beliefs and the corresponding values for all its (expanded) children and performs a point-based update at b to compute V(b). It takes $O(|S|^2)$ time to calculate the belief at a child node. After that, we perform a nearest neighbour search in $O(\mathcal{P}_g^U(\delta)|S|)$ time to check whether the child node lies within a distance δ of any point in the packing of $\mathcal{R}_{q}^{U}(b_{0})$ at that level. Since b has at most |A||Z| expanded children, the expansion operation takes $O(|A| \log |A| + |A||Z|(|S|^2 + |S|\mathcal{P}_g^U(\delta)))$ time. The pointbased update then computes V(b) as an average of its children's values, weighted by the probabilities specified by the observation function, and takes only O(|A||Z|) time. Since there are h packing of size $\mathcal{P}_g^U(\delta)$ each and by Lemma 2, $\mathcal{P}_q^U(\delta) \leq \mathcal{C}_q^U(\delta/2)$, the total running time of our algo-1) $\mathcal{C}_{a}^{U}(\delta/2)))$. Assume that |S|, |A|, and |Z| are constant to focus on the dependency on the covering number. So, we get the final result.

In Theorem 1, only an initial upper bound is utilized. Algorithms such as HSVI2 and SARSOP utilize an initial lower bound as well (Smith & Simmons, 2005; Kurniawati et al., 2008). The use of a good initial lower bound may cut down the size of the search space substantially. We define a search space limited by lower bound $V_f^L(b)$ and upper bound $V_g^U(b)$ as follows: $\mathcal{R}_{f,L}^{g,U}(b_0)$ is the space reachable from b_0 under all action-observation sequences satisfying $Q_g^U(b,a) \geq V^*(b)$ and $V_g^U(b) - V_f^L(b) > \frac{\epsilon}{\gamma^{a_b}}$, where d_b is the depth (or level) of b in the belief tree $\mathcal{T}_{\mathcal{R}}$.

Theorem 2. Given any constant $\epsilon > 0$ and any initial belief $b_0 \in \mathcal{B}$. Let $C_{f,L}^{g,U}(\delta)$ be the δ -covering number of $\mathcal{R}_{f,L}^{g,U}(b_0)$. Then, an approximation $V(b_0)$ of $V^*(b_0)$, with error $|V^*(b_0) - V(b_0)| \leq 2\epsilon$, can be found in time $O(h \cdot C_{f,L}^{g,U}(\delta/2)^2)$, where $h = \log_{\gamma} \frac{\epsilon(1-\gamma)}{2R_{\max}}$, $\delta = \frac{(1-\gamma)^2 \epsilon}{2\gamma R_{\max}}$, $V_f^L(b)$ is used as an initial lower bound and $V_g^U(b)$ is used as an initial upper bound.

Proof. We prove this theorem by using a modified algorithm in the proof of Theorem 1. We perform the depth-first search recursively on a belief tree $\mathcal{T}_{\mathcal{R}}$ that has root b_0 and height h, while maintaining a δ -packing of $\mathcal{R}_{f,L}^{g,U}(b_0)$ at *every* level. If b is not in $\mathcal{R}_{f,L}^{g,U}(b_0)$, namely $V_0^U(b) - V_0^L(b) \leq \frac{\epsilon}{\gamma^{d_b}}$, we set $V(b) = \frac{V_f^L(b) + V_g^U(b)}{2}$, abort the recursion at b, and backtrack. Else, if b is within a distance δ of a b' in

the current packing at level i, we set V(b) = V(b'), abort the recursion at b, and backtrack. Otherwise, we add b to the packing, sort the actions using $Q_q^U(b, a)$ and explore the actions according to the sorted order, with the larger values searched earlier. The estimate V(b) is initialized to the value returned by searching the first action and updated each time searching a new action, which returns an improved value, until $Q_q^U(b,a) < V(b) + \frac{3\epsilon}{2\gamma^i} + \frac{\epsilon(1-\gamma^{h-i-1})}{2}$.

We now calculate the values for h and δ required to achieve the given approximation bound 2ϵ at b_0 . Let $\epsilon_i = |V^*(b) - V^*(b)| = |V^*(b)| =$ V(b) denote the approximation error for a node b at level i of $\mathcal{T}_{\mathcal{R}}$, if the recursive search continues in the children of b. Let ϵ'_i denote the error for b, if the search aborts at b and sets V(b) = V(b') for some b' in the packing at level i. Hence, $\epsilon'_i \leq \frac{R_{\max}}{1-\gamma}\delta + \epsilon_i$. As in Theorem 1, we explore an action only if its initial upper bound is at least as large as the best upper bound among the searched actions. By the same argument as in Theorem 1's proof, after completing the update operations at b at level i, we have

$$\epsilon_i \leq \gamma \max\left\{\frac{\epsilon}{\gamma^{i+1}}, \epsilon'_{i+1}\right\} \leq \gamma \left[\frac{\epsilon}{\gamma^{i+1}} + \epsilon'_{i+1}\right]$$

and thus we can write the recurrence

$$\epsilon_i \leq \gamma \Big[\frac{\epsilon}{\gamma^{i+1}} + \Big(\frac{R_{\max}}{1-\gamma} \delta + \epsilon_{i+1} \Big) \Big].$$

Clearly, we can set $V_g^U(b) \leq \frac{R_{\max}}{1-\gamma}$ and $V_f^L(b) \geq -\frac{R_{\max}}{1-\gamma}$ for all $b \in \mathcal{B}$. So $\epsilon_h \leq \max_{b \in \mathcal{B}} \frac{V_g^U(b) - V_f^L(b)}{2} \leq \frac{R_{\max}}{1-\gamma}$.

Expanding the recurrence, we get

$$\epsilon_k \leq \frac{\epsilon}{\gamma^k} + \frac{\gamma R_{\max}(1 - \gamma^{(h-1)-k})}{(1 - \gamma)^2} \delta + \frac{\gamma^{h-k} R_{\max}}{1 - \gamma}$$
$$= \frac{3\epsilon}{2\gamma^k} + \frac{\epsilon(1 - \gamma^{(h-1)-k})}{2},$$

which holds for all $0 \le k \le h-2$, by setting $\delta = \frac{(1-\gamma)^2 \epsilon}{2\gamma R_{\max}}$ and $h = \log_{\gamma} \frac{\epsilon(1-\gamma)}{2R_{\max}}$. The final equality explains why we use $\frac{3\epsilon}{2\gamma^i} + \frac{\epsilon(1-\gamma^{h-i-1})}{2}$ to instead of $\frac{\epsilon}{2\gamma^i} + \frac{\epsilon(1-\gamma^{h-i})}{2}$ that was used in the proof of Theorem 1. So, we find that the error ϵ_0 at the root b_0 is given by $|V^*(b_0) - V(b_0)| \leq \frac{3\epsilon}{2}$ + $\frac{\epsilon(1-\gamma^{h-1})}{2} < 2\epsilon.$

Using the same analysis method in the proof of Theorem 1, the running time of the algorithm here is 1) $\mathcal{C}_{f,L}^{g,U}(\delta/2)))$. Thus, we get the final result.

The theorem suggests one avenue of fighting the curses of dimensionality and history (Pineau et al., 2003; Silver & Veness, 2010): use domain knowledge to find good lower and upper bounds, V_f^L and V_g^U , so that $\mathcal{C}_{f,L}^{g,U}(\delta/2)$ is small.

Algorithm 1 $\pi = PGVI(\epsilon, \delta)$.

- 1: Initialize the bounds V^L and V^U ;
- 2: packing = \emptyset , finished = \emptyset ;
- while $V^{U}(b_{0}) V^{L}(b_{0}) > 2\epsilon$ do 3:
- EXPLORE $(b = b_0, d_b = 0, \epsilon, \delta)$; 4:
- 5: end while
- 6: **return** the action corresponding to V^L ;

Algorithm 2 EXPLORE $(b, d_b, \epsilon, \delta)$.

- 1: if $excess(b, d_b, \epsilon) < 0$ then
- 2: insert b into finished (d_b) ;
- 3: return ;
- 4: end if
- 5: $a^* = \arg \max_{a \in A} Q^U(b, a);$
- 6: $z^* = \operatorname{arg} \max_{z \in Z^{\text{UF}}} [Pr(z|b, a^*) \cdot \operatorname{excess}(\tau(b, a^*, z),$ $d_b + 1, \epsilon$ · dis $(\tau(b, a^*, z), \text{packing}(d_b + 1), \delta)$];
- 7: if $z^* ==$ NULL or excess $(\tau(b, a^*, z^*), d_b + 1, \epsilon) < 0$ then
- 8: insert b into finished (d_b) ;

9: else

- $\begin{array}{l} p_{\min}' = \arg\min_{p \in \texttt{packing}(d_b+1)} ||\tau(b,a^*,z^*) p||;\\ \texttt{if} \; ||\tau(b,a^*,z^*) p_{\min}'|| > \delta \; \texttt{then} \end{array}$ 10:
- 11:

12: insert
$$\tau(b, a^*, z^*)$$
 into packing $(d_b + 1)$;

- 13: end if
- if $||\tau(b, a^*, z^*) p'_{\min}|| > \frac{(1-\gamma)^{2\epsilon}}{2\gamma R_{\max}}$ then EXPLORE $(\tau(b, a^*, z^*), d_b + 1, \epsilon, \delta)$; 14: 15:
- else if $p'_{\min} \notin \text{finished}(d_b + 1)$ then EXPLORE $(p'_{\min}, d_b + 1, \epsilon, \delta)$; 16:
- 17:
- 18: else
- insert $\tau(b, a^*, z^*)$ into finished $(d_b + 1)$; 19:
- 20: end if
- 21: end if
- 22: Perform a point-based update of lower and upper bounds at belief b;

5. Packing-Guided Value Iteration

The algorithms in the proofs of Theorems 1 and 2 are designed to prove performance bounds, hence use depthfirst search as the search strategy. Practical algorithms such as HSVI2 and SARSOP do a trial-based search, where the current bounds are used to select a path from b_0 to one leaf belief. The advantage of this is that the algorithm can be greedy with respect to the current best bounds, and this appears to be useful in practice. However, these algorithms do not really utilize the other insight of the analysis - that packing can be helpful in getting good performance.

In this section, we describe PGVI. It gets power by using the idea of building a separate packing of sampled beliefs at each level of the search tree in the proofs of our theorems. Such an idea can alleviate the curse of history in *both* theoretical and practical aspects. First, it controls the number

of sampled beliefs at each level of search tree so that it does not grow exponentially in the depth of the tree (subject to $C_{f,L}^{g,U}(\delta)$ being manageably small). Second, it can be used to spread the sampling areas in the search tree reduced by heuristics. PGVI achieves this by preferring to sample beliefs at level *i* which are far away from the beliefs in the packing of sampled beliefs at level *i* and that no belief in its δ -region has performed point-based updates recently.

5.1. PGVI Overview

PGVI is outlined in Algorithms 1 and 2. In these algorithms, we used the *packing* container to store a set of δ -packing and the *finished* container to store finished belief nodes at each level of the search tree in PGVI. Since PGVI is an extension of SARSOP, they have common points in selecting actions (Line 5), recursively invoking the EXPLORE function (Lines 15 and 17), and performing point-based updates (Line 22), as shown in Algorithm 2. We now emphasize some key differences between SARSOP and PGVI (see Algorithm 2). The first difference is the definition of finished belief nodes. Let $\operatorname{excess}(b, d_b, \epsilon) = V^U(b) - V^L(b) - \frac{3\epsilon}{2\gamma^{d_b}} - \frac{\epsilon(1-\gamma^{h-d_b-1})}{2}$, where $h = \log_\gamma \frac{\epsilon(1-\gamma)}{4R_{\max}}$. A belief node b in the packing of sampled beliefs at level d_b , packing (d_b) , is finished if excess $(b, d_b, \epsilon) \leq 0$. Let $p_{\min}(b) = \arg\min_{p \in \mathsf{packing}(d_b)} ||b - p||$. A node b that is not in the packing (d_b) is finished if excess $(b, d_b, \epsilon) \leq 0$, or $||b - p_{\min}(b)|| \leq \frac{(1-\gamma)^2\epsilon}{2\gamma R_{\max}}$ and $p_{\min}(b)$ is finished. The second difference is the observation selection strategy in Line 6. We define $Z^{\text{UF}} = \{z \in Z | \tau(b, a^*, z) \notin \text{finished}(d_b +$ 1)}. PGVI calculates the distance between $\tau(b, a^*, z)$ and the δ -packing of sampled beliefs at level $d_b + 1$, denoted $\operatorname{dis}(\tau(b, a^*, z), \operatorname{packing}(d_b + 1), \delta)$, to use it to spread the sampling in $\mathcal{R}_{f,L}^{g,U}(b_0)$. The new observation selection plays a key role in PGVI's efficient performance. The third difference is the criterion of forward exploration in Lines 7 \sim 21. Line 7 is used to check whether all successors of b are finished, where b is a belief in the packing (d_b) . If yes, Line 8 is executed to change b's status into finished. The belief p'_{\min} in Line 10 is the belief in the packing $(d_b + 1)$ of sampled beliefs with minimal distance to the belief $\tau(b, a^*, z^*)$. Algorithm 2 inserts $\tau(b, a^*, z^*)$ into the packing at level $d_b + 1$ only if the distance is greater than δ (see Lines 11 \sim 13). If the distance between $\tau(b, a^*, z^*)$ and p'_{\min} is greater than $\frac{(1-\gamma)^2\epsilon}{2\gamma R_{\max}}$, it recursively invokes the EXPLORE function at $\tau(b, a^*, z^*)$. Otherwise, it checks whether p'_{\min} is finished. If yes, it changes the status of $\tau(b, a^*, z^*)$ into finished. If not, it recursively invokes the EXPLORE function at $p'_{\rm min}$. Overall, Lines 14 \sim 20 are used to control the width of the tree and the frequency of point-based updates to ensure PGVI's polynomial time performance, as stated later. If PGVI encounters a belief b at level d_b that is close

to some belief b' in the packing at level d_b , it only explores forward from b' and terminates the forward search from b.

5.2. Packing-Guided Search

Besides using the set of δ -packing to control the width of the search tree, PGVI also uses it to guide search based on the two following principles. First, for beliefs b with at least δ distance to the δ -packing of sampled beliefs at level d_b of the tree, it prefers to sample beliefs that are far away from beliefs in packing (d_b) . This is implemented by setting $\operatorname{dis}(b,\operatorname{packing}(d_b),\delta) = \min_{p\in\operatorname{packing}(d_b)}||b-p||$ when $\min_{p \in \text{packing}(d_b)} ||b - p|| > \delta$. Second, for beliefs with at most δ distance to the corresponding δ -packing, it biases sampling beliefs b that $p_{\min}(b)$ has not performed a pointbased update recently. We record the time index of the last update at $p_{\min}(b)$ and denote it as $N(p_{\min}(b))$. Let N be the total number of point-based updates that have been performed by PGVI. We set $dis(b, packing(d_b), \delta) = \omega \delta$, where $\omega = (N + 1 - N(p_{\min}(b)))/(N + 1)$, when $\min_{p \in \mathsf{packing}(d_b)} ||b - p|| \le \delta$. Together, we define

 $\operatorname{dis}(\tau(b, a^*, z), \operatorname{packing}(d_b + 1), \delta)$

$$= \left\{ \begin{array}{l} \omega \delta \text{ if } \min_{p \in \texttt{packing}(d_b+1)} || \tau(b, a^*, z) - p || \leq \delta \\ \min_{p \in \texttt{packing}(d_b+1)} || \tau(b, a^*, z) - p || \quad \text{otherwise} \end{array} \right.$$

in Line 6 of Algorithm 2. The dis $(b, \text{packing}(d_b), \delta)$ is always greater than 0 in our setting. The key innovation here is to use the packing container to spread the sampling areas by modifying the observation selection strategy in HSVI2 and SARSOP to enable much better exploration.

5.3. Convergence

Theorem 3 shows that $PGVI(\epsilon, \delta)$ terminates after performing at most $h^2 C_{f,L}^{g,U}(\delta/2)|A||Z|$ point-based updates. Its proof is a combination of the proof in HSVI2 style algorithm (Smith, 2007) and the proof in Theorem 2.

Theorem 3. Given any constant $\epsilon > 0$ and any initial belief $b_0 \in \mathcal{B}$, $PGVI(\epsilon, \delta)$ guarantees $V^*(b_0) - V^{\pi}(b_0) \leq 2\epsilon$ after at most $h^2 C_{f,L}^{g,U}(\delta/2)|A||Z|$ point-based updates, where $h = \log_{\gamma} \frac{\epsilon(1-\gamma)}{2R_{\max}}$, $\delta = \frac{(1-\gamma)^2\epsilon}{2\gamma R_{\max}}$, $V_f^L(b)$ and $V_g^U(b)$ are used as initial lower and upper bounds respectively.

Proof. In the proof of Theorem 2, we have shown that if a point-based update is performed at b when all its children are finished, then b will also be finished. This shows the correctness of Lines 7 and 8 in the code.

Now we argue that each trial will switch one unfinished belief node into finished belief node if b_0 is still unfinished. From Algorithm 2 we can see a belief b is inserted into the finished (d_b) at the end of each trial. In Line 2 it inserts b in the packing (d_b) into finished nodes only when $\operatorname{excess}(b, d_b, \epsilon) \leq 0$. In Line 8 it inserts b in the $\operatorname{packing}(d_b)$ into finished nodes only when all of its children become finished. In Line 19 it inserts b not in the $\operatorname{packing}(d_b)$ into finished nodes only when $p_{\min}(b)$ is finished. So, all nodes b inserted into the finished (d_b) satisfy the condition of finished nodes.

PGVI only searches in $\mathcal{R}^{g,U}_{f,L}(b_0)$. From Lines $1 \sim 3$ and $7 \sim 8$ we can see that it does not search and perform pointbased updates on nodes that satisfy $\operatorname{excess}(b, d_b, \epsilon) \leq 0$. Since $\max_{a \in A} Q^U(b, a) \geq V^*(b)$, from Line 5 we can see that PGVI does not search towards action branches *a* that satisfy $Q^U(b, a) < V^*(b)$.

Finally, Algorithm 2 only searches the children of belief nodes b in the packing (d_b) . Thus, there are at most $C_{f,L}^{g,U}(\delta/2)|A||Z|$ unfinished beliefs at each level of the search tree in PGVI. Totally, there are at most $h \cdot C_{f,L}^{g,U}(\delta/2)|A||Z|$ unfinished beliefs. Each trial performs at most h point-based updates at beliefs. So, PGVI converges after performing at most $h^2 \cdot C_{f,L}^{g,U}(\delta/2)|A||Z|$ updates. \Box

This theorem implies that PGVI converges with a number of updates that is quadratic polynomial rather than exponential in the planning horizon h, given there is no h's exponential term hidden in $C_{f,L}^{g,U}(\delta)$.

6. Experiments

In this section, we compare PGVI with some existing pointbased algorithms in their performance on 65 out of the 68 small benchmark problems from Cassandra's POMDP website¹ and 4 larger robotic problems (Ross et al., 2008; Hsu et al., 2008; Kurniawati et al., 2008; 2011). We discarded 3 of the 68 problems (1d.noisy, 4×4.95 and bulkhead.A) due to parsing issues. Our experimental platform is a CPU at 2.40GHz, with 3GB memory. We used the APPL-0.95 software package² to implement the PGVI algorithm, but did not use the MOMDP representation (Ong et al., 2010). We used α -vectors as lower bounds and sawtooth representations as upper bounds (Smith, 2007). Although the convergence proof of PGVI suggests using $\delta = \frac{(1-\gamma)^2 \epsilon}{2\gamma R_{\text{max}}}$, the value is not useful for achieving the best performance in practice because δ often becomes very small for problems with large $R_{\rm max}$ and γ . We set δ = $(t_{\rm max} - t)\delta_0/t_{\rm max}$, where $\delta_0 = 0.5$, $t_{\rm max}$ represents the upper bound of running time, and t represents the elapsed time in running PGVI, to make PGVI do the best in the available time. Given that the value of δ changes with time, we use the simpler value of $excess(b, d_b, \epsilon) = V^U(b) - V^U(b)$ $V^{L}(b) - \epsilon / \gamma^{d_{b}}$ to terminate trials. Theorem 3 still holds when using the simple one. In PGVI and SARSOP, ϵ is set to $0.5 \times [V^U(b_0) - V^L(b_0)]$ in the beginning of each trial.

6.1. 65 Small Benchmark Problems

We compared PGVI with HSVI2, SARSOP, and GapMin on the suite of 65 benchmark problems:

- PGVI found a near optimal solution (gap smaller than one unit at the third significant digit) in less than 1,000 seconds for 35 problems. In comparison, HSVI found 33, SARSOP found 32, and GapMin found 46 (Poupart et al., 2011).
- Among the 33 problems in Tables 1 and 2 of (Poupart et al., 2011) with 1,000 seconds limit, PGVI achieved the highest lower bound on 31 problems, while GapMin (LP) only on 1 problem. PGVI achieved the smallest gap on 12 problems, while GapMin (LP) on 19 problems. PGVI achieved smaller gap than HSVI2 on 27 problems and than SARSOP on all 33 problems.
- Among the 8 problems in Table 3 of (Poupart et al., 2011) with 50,000 seconds limit, PGVI achieved the highest lower bound on 6 of the problems and the smallest gap on 2 of the problems (cit, pentagon).

To summarize, the performance of PGVI is comparable to HSVI2, SARSOP, and GapMin on these small problems.

For the 35 problems on which PGVI performed well, we recorded the number of α -vectors $(|\Gamma|)$, the number of beliefs expanded $(|B^s|)$, the estimated δ -packing number of B^s $(\hat{\mathcal{P}}_{f,L}^{g,U}(\delta))$, with $\delta = 10^{-6}$, and the corresponding computation time (Time). The linear correlation coefficient between $\hat{\mathcal{P}}_{f,L}^{g,U}(\delta)$ and Time is as high as 0.987, while the correlation coefficient between $|\Gamma|$ and Time is only -0.045. This suggests that $\hat{\mathcal{P}}_{f,L}^{g,U}(\delta)$ is a good indicator of the running time of PGVI.

6.2. Larger Benchmark Problems

We now report PGVI and SARSOP's experimental results on 4 more challenging robotic tasks: FieldVisionRockSample[5,5] (Ross et al., 2008), Tracking (Hsu et al., 2008), Homecare (Kurniawati et al., 2008) and 3D Navigation (Kurniawati et al., 2011) (see Table 1). For lack of space, we present only the comparison with SARSOP in details. While GapMin variants have good performance on small benchmarks, the software package³ provided by the authors is unable to scale up on these larger problems. In general, SARSOP outperforms HSVI2 (Kurniawati et al., 2008).

For each problem, we ran SARSOP and recorded the gap it achieved and other performance measurements when 10,000 seconds reached. Then, for all test problems except 3D Navigation, we recorded the time that PGVI needed to achieve the same gap and other performance measurements at that time point. For the 3D Navigation problem we chose a time point to better distinguish PGVI from SARSOP.

¹http://www.pomdp.org

²http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

³https://cs.uwaterloo.ca/ ppoupart/

Covering Number for Efficient Heuristic-based POMDP Planning

				Tormanee e	omparison	1.						
Algorithm	Reward	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	$ B^s $	$\hat{\mathcal{P}}_{f,L}^{g,U}(\delta)$	T_0 (s)	Time (s)			
FieldVision	FieldVisionRockSample[5,5] $(S = 801, A = 5, Z = 32)$											
SARSOP	23.31 ± 0.14	0.47	23.27	23.74	24,289	10,187	6,204	0.2	9,764			
PGVI	$23.32 \pm \ 0.14$	0.47	23.29	23.76	14,207	6,473	5,107	0.2	2,570			
Tracking (S = 9,248, A =	9, Z = 1	,264)									
SARSOP	14.79 ± 0.14	0.69	14.41	15.10	24,174	2,240	1,762	893	9,998			
PGVI	14.76 ± 0.15	0.69	14.43	15.12	7,734	1,601	1,365	893	2,294			
Homecare	(S = 5, 408, A =	= 9, Z =	928)									
SARSOP	16.97 ± 0.14	3.43	16.55	19.98	27,134	5,242	2,624	410	9,987			
PGVI	17.06 ± 0.14	3.43	16.56	19.99	7,583	3,452	2,338	410	1,819			
3D Navigat	3D Navigation $(S = 16, 969, A = 5, Z = 14)$											
SARSOP	$-63\pm$ 0	754,977	-100	754,877	2	38,541	31,717	12	9,934			
PGVI	$202,665\pm1,859$	744,045	16,339	760,383	289	15,687	13,085	12	1,719			

Table 1. Performance comparison

In Table 1, Column 2 lists the estimated expected total rewards for the computed policies and the 95% confidence intervals. Each pair of reward and confidence interval was received over 100,000 simulation runs respectively. Each simulation was terminated after 100 steps. Columns 3~10 list the gap between $V^L(b_0)$ and $V^U(b_0)$, lower bound $V^L(b_0)$, upper bound $V^U(b_0)$, $|\Gamma|$, $|B^s|$, $\hat{\mathcal{P}}_{f,L}^{g,U}(\delta)$ with $\delta =$ 10^{-1} , the lower and upper bounds initialization time T_0 , and the total computation time (including T_0), respectively. PGVI found the same gaps (see Column 3) but required significantly fewer α -vectors, expanded beliefs and computation time than SARSOP (see Columns 6, 7 and 10). Compared with SARSOP, PGVI had higher $\hat{\mathcal{P}}_{f,L}^{g,U}(\delta) / |B^s|$ empirically (see Columns 7 and 8), which captured well the fact that PGVI prefers to sample beliefs far away from the sampled set. Since SARSOP and PGVI used the blind policy and FIB methods to initialize bounds, their initialization time T_0 were the same as each other on each problem (see Column 9). On these larger POMDP problems, PGVI substantially outperformed SARSOP by $3.80 \sim 5.78$ times in terms of Time (see Column 10), and by $3.80 \sim 6.80$ times in terms of $Time - T_0$ (see Columns 9 and 10).

Figure 1 compares the evolution of the bound gap over time between PGVI and SARSOP. We have two observations from it. First, PGVI achieved a smaller gap than SARSOP over time on each problem. This implies that PGVI is more efficient. Second, PGVI was risky in consuming more space in order to store the packing set. As shown on the 3D Navigation task, PGVI ran out of memory around 6,000 seconds. Here, we leave the space reduction of the packing set stored in PGVI as a future topic.

7. Conclusions

In this paper, we presented two theoretical results that respectively connect the complexity of approximate POMDP planning to covering numbers of the search spaces reduced by the upper bound, and both the lower and upper bounds of the optimal value function. We designed the novel

Figure 1. Evolution of the gap between upper and lower bounds (*y*-axis) over running time (*x*-axis) in PGVI and SARSOP.

PGVI algorithm by using the idea of building a separate packing at each level of the search tree. The set of packing is used to alleviate the curse of history by controlling the width of the search tree and spreading the sampling areas in the search space reachable under heuristics. Theoretically, PGVI guarantees to find an ϵ -optimal solution after performing at most $h^2 C_{f,L}^{g,U}(\delta/2)|A||Z|$ point-based updates. Empirically, PGVI outperformed SARSOP by $3.80 \sim 6.80$ times on 4 challenging robotic problems; it also showed a very efficient performance compared with other state-of-the-art point-based algorithms on 65 small benchmark problems from Cassandra's POMDP website.

Acknowledgements

Z. Zhang is supported in part by MoE ARF grant MOE2010-T2-2-071. D. Hsu is supported in part by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's IRG research program (Subaward Agreement No. 41). W.S. Lee is supported in part by US Air Force Research Laboratory under agreement FA2386-12-1-4031.

References

- Bonet, B. and Geffner, H. Solving POMDPs: RTDP-Bel vs. point-based algorithms. In *IJCAI*, pp. 1641–1646, 2009.
- Grześ, M., Poupart, P., and Hoey, J. Isomorph-free branch and bound search for finite state controllers. In *IJCAI*, pp. 2282–2290, 2013.
- Hauskrecht, M. Value-function approximations for partially observable Markov decision processes. In *Journal* of Artificial Intelligence Research, volume 13, pp. 33– 94, 2000.
- Hsiao, K., Kaelbling, L.P., and Lozano-Perez, T. Grasping POMDPs. In *ICRA*, pp. 4685–4692, 2007.
- Hsu, D., Lee, W.S., and Rong, N. What makes some POMDP problems easy to approximate. In *NIPS*, pp. 689–696, 2007.
- Hsu, D., Lee, W.S., and Rong, N. A point-based POMDP planner for target tracking. In *ICRA*, pp. 2644–2650, 2008.
- Kaelbling, L.P., Littman, M.L., and Cassandra, A.R. Planning and acting in partially observable stochastic domains. *Artificial Intelligence*, 101(1-2):99–134, 1998.
- Kakade, S., Kearns, M., and Langford, J. Exploration in metric state spaces. In *ICML*, pp. 306–312, 2003.
- Kurniawati, H., Hsu, D., and Lee, W.S. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In *RSS*, 2008.
- Kurniawati, H., Du, Y.Z., Hsu, D., and Lee, W.S. Motion planning under uncertainty for robotic tasks with long time horizons. *International Journal of Robotics Research*, 30(3):308–323, 2011.
- Madani, O., Hanks, S., and Condon, A. On the undecidability of probabilistic planning and infinite-horizon partially observable Markov decision problems. In *AAAI*, pp. 541–548, 1999.
- Ong, S.C., Png, S.W., Hsu, D., and Lee, W.S. Planning under uncertainty for robotic tasks with mixed observability. *International Journal of Robotics Research*, 29 (8):1053–1068, 2010.
- Pineau, J., Gordon, G., and Thrun, S. Point-based value iteration: An anytime algorithm for POMDPs. In *IJCAI*, pp. 1025–1032, 2003.
- Pineau, J., Gordon, G.J., and Thrun, S. Anytime pointbased approximations for large POMDPs. *Journal of Aritificial Intelligence Research*, 27:335–380, 2006.

- Poupart, P., Kim, K.E., and Kim, D. Closing the gap: Improved bounds on optimal POMDP solutions. In *ICAPS*, pp. 194–201, 2011.
- Ross, S., Pineau, J., Paquet, S., and Chaib-Draa, B. Online planning algorithms for POMDPs. *Journal of Aritificial Intelligence Research*, 32:663–704, 2008.
- Shani, G., Brafman, R.I., and Shimony, S.E. Forward search value iteration for POMDPs. In *IJCAI*, pp. 2619– 2624, 2007.
- Shani, G., Pineau, J., and Kaplow, R. A survey of pointbased POMDP solvers. Autonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013.
- Silver, D. and Veness, J. Monte-Carlo planning in large POMDPs. In *NIPS*, pp. 2164–2172, 2010.
- Smith, T. Probabilistic planning for robotic exploration. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2007.
- Smith, T. and Simmons, R. Point-based POMDP algorithms: Improved analysis and implementation. In UAI, pp. 542–547, 2005.
- Zhang, Z. and Chen, X. FHHOP: A factored hybrid heuristic online planning algorithm for large POMDPs. In *UAI*, pp. 934–943, 2012.
- Zhang, Z., Littman, M.L., and Chen, X. Covering number as a complexity measure for POMDP planning and learning. In AAAI, pp. 1853–1859, 2012.

Supplementary Materials

Table 2. Results for the 33 benchmark problems that were not solved (near) optimally by all solvers: comparison of the gap between $V^L(b_0)$ and $V^U(b_0)$, lower bound $V^L(b_0)$, upper bound $V^U(b_0)$, the number of α -vectors ($|\Gamma|$) to represent V^L and time (seconds) for runs terminated after 1,000 seconds or when the gap is less than one unit at the 3rd significant digit. The smallest gaps or the highest lower bounds among algorithms are labeled with red color. Note that HSVI2, SARSOP and GapMin's results were reported in Tables 1 and 2 in (Poupart et al., 2011).

Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	Time	Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	Time
aloha.10						aloha.30					
(S = 30, A)	=9, Z	$ = 3, \gamma =$	0.999)			(S = 90, A)	=29,	$Z =3, \gamma$	= 0.999)		
HSVI2	9.0	535.4	544.4	4,729	997	HSVI2	38	1,212	1,249	2,062	1,000
SARSOP	9.5	535.2	544.7	48	1,000	SARSOP	74	1,177	1,252	86	999
GapMin ST	10.3	534.1	544.4	136	673	GapMin ST	113	1,136	1,249	44	800
GapMin LP	7.6	536.5	544.2	152	968	GapMin LP	111	1,136	1,247	46	799
PGVI	7.3	537.4	544.7	58	999	PGVI	19	1,231	1,250	342	994
cheng.D3-1						cheng.D3-2					
(S = 3, A	= 3, Z	$=3, \gamma=0$	0.999)			(S = 3, A)	=3, Z	$=3, \gamma=0$	0.999)		
HSVI2	11	6,417	6,428	16	997	HSVI2	10	8,240	8,250	8	404
SARSOP	15	6,417	6,432	10	1,000	SARSOP	12	8,240	8,252	6	1,000
GapMin ST	10	6,412	6,422	8	26	GapMin ST	10	8,235	8,245	3	15
GapMin LP	10	6,412	6,422	8	25	GapMin LP	10	8,235	8,245	3	22
PGVI	10	6,417	6,427	8	990	PGVI	10	8,240	8,250	4	59
cheng.D3-3						cheng.D3-4					
(S = 3, A	= 3, Z	$=3, \gamma=0$	0.999)			(S = 3, A)	=3, Z	$=3, \gamma=0$	0.999)		
HSVI2	105	7,457	7,562	13	991	HSVI2	41	5,827	5,868	15	993
SARSOP	129	7,457	7,585	8	999	SARSOP	48	5,827	5,875	5	1,000
GapMin ST	10	7,452	7,462	7	56	GapMin ST	10	5,822	5,832	8	78
GapMin LP	10	7,452	7,462	7	37	GapMin LP	10	5,822	5,832	5	37
PGVI	102	7,457	7,559	14	999	PGVI	39	5,827	5,866	19	999
cheng.D3-5						cheng.D4-1					
(S = 3, A	= 3, Z	$=3, \gamma=0$	0.999)			(S = 4, A)	= 4, Z	$=4, \gamma=0$	0.999)		
HSVI2	26	8,673	8,698	63	990	HSVI2	167	6,715	6,882	19	999
SARSOP	34	8,673	8,706	10	1,000	SARSOP	180	6,715	6,894	10	1,000
GapMin ST	10	8,668	8,678	9	34	GapMin ST	10	6,710	6,720	11	553
GapMin LP	10	8,668	8,678	10	15	GapMin LP	10	6,711	6,721	11	288
PGVI	31	8,673	8,703	19	1,000	PGVI	171	6,715	6,886	11	999
cheng.D4-2						cheng.D4-3					
(S = 4, A	=4, Z	$=4, \gamma = 0$	0.999)			(S = 4, A)	=4, Z	$=4, \gamma = 0$	0.999)		
HSVI2	63	8,381	8,443	22	995	HSVI2	55	7,661	7,715	20	997
SARSOP	71	8,378	8,450	8	999	SARSOP	60	7,660	7,721	11	1,000
GapMin ST	10	8,376	8,386	12	135	GapMin ST	10	7,656	7,666	10	91
GapMin LP	10	8,376	8,386	13	115	GapMin LP	10	7,656	7,666	10	68
PGVI	64	8,381	8,445	9	1,000	PGVI	55	7,661	7,715	11	999
cheng.D4-4			0.000)			cheng.D4-5			0.000)		
(S = 4, A)	=4, Z	$=4, \gamma = 0$	0.999)	10	~~-	(S = 4, A)	=4, Z	$=4, \gamma = 0$	0.999)	~ ~	
HSVI2	65	7,670	7,735	18	997	HSVI2	91	7,884	7,975	35	994
SARSOP	69	7,669	7,738	6	1,000	SARSOP	96	7,884	7,980	14	1,000
GapMin ST	10	7,665	7,675	16	313	GapMin ST	10	7,879	7,889	19	415
GapMin LP	10	7,665	7,675	11	109	GapMin LP	10	7,879	7,889	17	197
PGVI	64	7,670	7,734	16	1,000	PGVI	90	7,884	7,974	18	998
cheng-D5-1	2 7	2	0,000)				4 4	7 99 .	0.000)		
(S = 0, A	= 3, Z	$= 3, \gamma = 0$	0.999)	10	006		$A_{ } = 4, $	$ = 20, \gamma$	= 0.990)	2 720	075
	59	0,549 6 5 4 0	6,008	19	990		0.093	0.745	0.838	2,739 2,109	973
SAKSUP CanMin ST	04	0,549	0,015	9	999	SARSOP CanMin ST	0.049	0.791	0.840	5,108	907
Gapwin SI	10	0,544	0,334	1	20	ConMin LD	0.030	0.000	0.838	1	602 855
PGVI	10 54	0,344 6 540	0,334	12	23	PGVI	0.038	0.000	0.838	1 6 7 / 9	633 000
tigon and (10	34	$\frac{0,349}{1-4}$	1 - 3	12	777	ConMin ST	0.010	2 206	2 402	206	012
HSVID	$r_{ } = 01, $	$ A_1 = 4, Z $ 2 1 2 9	$\gamma = 3, \gamma \equiv 2$	3 204	000	GapMin I D	0.100	2.290	2.402	255	912
SADSOD	0.200	2.130	2.525	045	990	DGVI	0.152	2.2/1 2.202	2.402	233	923
SARSOP	0.202	2.207	2.329	943	997	1.0.61	0.213	2.293	2.308	1,947	991

			Table	e 5. Result	.s continu	ed (1,000 secol	ius mint).				
Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	Time	Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	Time
ejs1						ejs2					
(S = 3, A)	= 4, Z	$=2, \gamma =$	0.999)			(S = 2, A)	= 2, Z	$=2, \gamma = 0$	0.999)		
HSVI2	7.8	421.3	429.1	13	991	HSVI2	91	1,781	1,872	8	997
SARSOP	48.8	421.3	470.1	9	1,000	SARSOP	115	1,781	1,896	7	1,000
GapMin ST	0.4	421.1	421.5	9	52	GapMin ST	10	1,777	1,787	6	22
GapMin LP	0.3	421.2	421.6	9	65	GapMin LP	10	1,776	1,786	6	13
PGVI	0.1	421.3	421.4	9	184	PGVI	83	1.781	1.864	7	1.000
eis4				-	-	fourth			,		,
(S = 3 A)	= 2 Z	$= 2 \gamma = 1$	0 999)			S = 1.052	A = 4	Z = 28	$\gamma = 0.990$	n)	
HSVI2	202	-133.6	-113.4	7	999		0 376	0.242	0.617	3 345	994
SARSOP	20.2	-133.6	-110.4	2	1 000	SARSOP	0.370	0.242	0.618	3 595	975
GanMin ST	1.0	-135.0	-110.0	2	1,000	GanMin ST	0.550	0.200	0.618	3,393	532
CapMin J D	1.0	-134.1	-133.1	2	12	Con Min LD	0.010	0.000	0.018	1	552
Dapivini Lr	15.5	-134.1	-155.1	2	1.000		0.010	0.000	0.018	L 6 166	009
	15.5	-155.0	-118.0	2	1,000		0.142	0.473	0.017	0,100	964
		7 17	0.050)					1 01 .	0.050)		
(S = 92, A)	= 5, Z	$ \gamma = 17, \gamma$	= 0.950)	0.000	007	(S = 60, A)	= 5, Z	$ \gamma = 21, \gamma$	= 0.950)	1.0/7	000
HSVI2	0.525	0.361	0.886	2,393	997	HSVI2	0.250	0.945	1.195	1,367	996
SARSOP	0.525	0.374	0.898	262	992	SARSOP	0.210	0.995	1.206	456	998
GapMin ST	0.372	0.417	0.789	294	940	GapMin ST	0.078	1.008	1.086	290	765
GapMin LP	0.428	0.362	0.790	153	759	GapMin LP	0.085	1.003	1.089	159	845
PGVI	0.422	0.440	0.862	736	996	PGVI	0.176	1.004	1.180	838	1,000
iff						learning.c2					
(S = 104, .	A = 4,	$Z = 22, \gamma$	v = 0.999			(S = 12, A)	= 8, Z	$ \gamma = 3, \gamma =$	= 0.999)		
HSVI2	0.924	8.931	9.855	7,134	999	HSVI2	0.090	1.549	1.639	4,082	996
SARSOP	0.775	9.095	9.871	6,811	997	SARSOP	0.093	1.556	1.648	4,903	996
GapMin ST	0.722	9.214	9.936	544	785	GapMin ST	0.078	1.553	1.631	810	893
GapMin LP	0.660	9.261	9.920	532	940	GapMin LP	0.024	1.558	1.582	470	885
PGVI	0.657	9.233	9.890	12,795	999	PGVI	0.055	1.558	1.613	13,606	997
learning.c3				,		learning.c4					
(S = 24, A)	= 12.	$Z =3,\gamma$	= 0.999)			S = 48, A	= 16.	$Z =3,\gamma$	= 0.999)		
HSVI2	0.250	2.364	2.614	4.229	988	HSVI2	0.567	3.055	3.622	4.569	999
SARSOP	0.222	2.446	2.668	981	997	SARSOP	0.321	3.358	3.679	923	982
GanMin ST	0.214	2.442	2,655	446	944	GanMin ST	0.363	3 308	3 671	349	858
GanMin I P	0.180	2 4 4 1	2.633	515	947	GanMin I P	0.353	3 306	3 658	500	989
PGVI	0.100	2.450	2.622	9 4 2 3	982	PGVI	0.335	3 367	3 663	7 436	991
machina	0.172	2.430	2.042	7,725	702	milos agai07	0.270	5.507	5.005	7,450	<i>))</i> 1
S = 256	A = A	7 - 16	(-0.000)				- 6 7	<u> </u>	0.000)		
(S = 250, S	-4, 2 40	$2 = 10, \gamma$	= 0.990)	662	082	= 20, Z	10 21	$\gamma = 0, \gamma = 40.15$	67.46	2 065	008
	5.49 2.57	05.10	00.00	150	982		10.51	49.13	67.40	3,903	998
SARSOP	3.57	03.18	00.75	150	998	SARSOP	19.01	49.74	09.33	3,099	997
GapMin ST	2.98	62.93	65.90		817	GapMin ST	17.67	49.89	67.55	1,212	774
GapMin LP	3.20	62.39	65.59	67	856	GapMin LP	15.42	49.97	65.39	581	730
PGVI	3.09	63.18	66.27	209	990	PGVI	17.40	50.06	67.46	10,096	980
query.s2	- 1	_	`			mit		-	>		
(S = 9, A	= 2, Z	$=3, \gamma =$	0.990)			(S = 204,	A = 4,	$Z =28, \gamma$	= 0.990)		
HSVI2	4.2	490.7	495.0	1,366	992	HSVI2	0.094	0.791	0.885	5,539	1,000
SARSOP	5.5	490.7	496.3	113	999	SARSOP	0.067	0.819	0.885	2,820	999
GapMin ST	1.0	490.4	491.4	37	224	GapMin ST	0.039	0.845	0.884	152	806
GapMin LP	1.0	490.5	491.5	31	57	GapMin LP	0.055	0.828	0.883	120	859
PGVI	3.8	490.7	494.6	495	1,000	PGVI	0.028	0.857	0.885	6,218	999
query.s3						pentagon					
(S = 27, A)	=3, Z	$Z =3, \gamma=$	0.990)				A = 4,	$Z =28, \gamma$	= 0.990)		
HSVI2	26.2	546.8	573.1	1,203	997	HSVI2	0.192	0.634	0.826	4,361	997
SARSOP	28.1	546.8	574.8	112	999	SARSOP	0.131	0.696	0.827	3,196	971
GapMin ST	10.8	546.7	557.5	154	686	GapMin ST	0.826	0.000	0.826	1	990
GapMin LP	7.0	546.7	553.7	119	706	GapMin LP	0.826	0.000	0.826	1	893
PGVI	26.0	546.9	572.9	549	1.000	PGVI	0.072	0.754	0.826	5.842	996
query s4					-,500	sunvsh			2.020	-,	
S = 81 A	=4 7	$Z = 3 \sim -$. 0.990)				$A \equiv 4^{-1}$	$Z = 28 \sim$	= 0.990)		
HSVI2	, Z 51 0		621 /	2 8/16	000	$ \mathbf{HSV12} HSV12$	0.240	0 557	- 0.000) 0 706	4 370	007
SARSOD	5/ 2	560.1	672 /	2,0 1 0 166	1 000	SARSOD	0.240	0.557	0.790	3 527	991 086
GanMin CT	J4.J 16 1	560.6	615.6	277	1,000	GanMin CT	0.323	0.475	0.790	<i>3,331</i> 1	900 020
GapMin J D	40.1	560.5	612.0	3// 140	930	GapMin J D	0.790	0.000	0.790	1	930
Gapivin LP	43.2	509.5	621.0	109	939	Capinin LP	0.190	0.000	0.790	1	9/4
ruvi	32.2	209.0	021.8	440	9/9	L L L L L L L L L L L L L L L L L L L	0.137	0.039	0.790	3,974	98/

Table 3. Results continued (1,000 seconds limit).

Table 4. Results for 8 problems of the 18 problems that were not solved (near) optimally by any of the solvers, with 50,000 seconds limit.
The smallest gaps or the highest lower bounds among algorithms are labeled with red color. Note that HSVI2, SARSOP and GapMin's
results were reported in Table 3 in (Poupart et al., 2011).

Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	Time	Algorithm	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	Time
cit						hallway					
(S = 284,	A = 4,	$Z =28, \gamma$	= 0.990)			S = 60, A	= 5, Z	$ \gamma =21,\gamma=21$	= 0.950)		
HSVI2	0.018	0.819	0.837	29,803	49,760	HSVI2	0.179	0.994	1.173	15,374	49,951
SARSOP	0.017	0.823	0.840	21,168	49,916	SARSOP	0.178	1.013	1.191	3,053	49,992
GapMin ST	0.023	0.814	0.837	739	48,931	GapMin ST	0.043	1.015	1.058	947	34,828
GapMin LP	0.015	0.822	0.836	648	45,473	GapMin LP	0.036	1.016	1.051	851	43,184
PGVI	0.007	0.831	0.838	32,041	49,861	PGVI	0.134	1.017	1.150	18,902	49,831
hallway2						iff					
(S = 92, A)	= 5, 2	$Z =17,\gamma$ =	= 0.950)			S = 104, .	A = 4,	$Z =22, \gamma$	= 0.999)		
HSVI2	0.421	0.432	0.853	18,505	49,983	HSVI2	0.199	9.302	9.501	40,984	50,000
SARSOP	0.448	0.434	0.882	1,901	49,973	SARSOP	0.290	9.259	9.549	54,016	49,966
GapMin ST	0.262	0.461	0.723	1,647	46,687	GapMin ST	0.634	9.273	9.908	1,614	34,472
GapMin LP	0.226	0.468	0.694	1,135	36,766	GapMin LP	0.156	9.275	9.431	1,626	40,046
PGVI	0.340	0.485	0.825	3,846	49,999	PGVI	0.237	9.267	9.504	63,784	49,978
machine						mit					
(S = 256,	A = 4,	$Z =16, \gamma$	= 0.990)			(S = 204, .	A = 4,	$Z =28, \gamma$	= 0.990)		
HSVI2	2.89	63.18	66.07	7,857	49,998	HSVI2	0.058	0.827	0.885	34,461	49,942
SARSOP	3.02	63.18	66.20	996	49,963	SARSOP	0.020	0.866	0.885	20,662	49,616
GapMin ST	1.67	63.17	64.84	139	49,261	GapMin ST	0.011	0.871	0.882	861	41,564
GapMin LP	1.14	63.17	64.30	173	49,036	GapMin LP	0.009	0.872	0.881	832	43,680
PGVI	2.45	63.18	65.63	592	49,987	PGVI	0.011	0.874	0.885	30,598	49,911
pentagon						sunysb					
(S = 212,	A = 4,	$Z =28, \gamma$	= 0.990)			S = 36, A	= 5, Z	$ \zeta =17,\gamma$ =	= 0.950)		
HSVI2	0.135	0.691	0.826	29,033	49,924	HSVI2	0.217	2.286	2.502	28,182	49,978
SARSOP	0.070	0.757	0.827	21,950	49,994	SARSOP	0.231	2.290	2.522	5,333	49,987
GapMin ST	0.825	0.000	0.825	1	44,437	GapMin ST	0.055	2.322	2.377	2,404	38,675
GapMin LP	0.150	0.675	0.824	425	40,436	GapMin LP	0.052	2.321	2.373	2,404	43,254
PGVI	0.026	0.800	0.826	29,292	49,845	PGVI	0.160	2.317	2.477	20,836	49,935

Table 5. Parameters for the 35 small benchmark problems that PGVI could find near optimal solutions within 1,000 seconds.

Problem	S	A	Z	γ	Problem	S	A	Z	γ
1d	4	2	2	0.750	4×3.95	11	4	6	0.950
$4 \times 5 \times 2.95$	39	4	4	0.950	bridge-repair	5	12	5	0.950
cheese.95	11	4	7	0.950	cheese-taxi	34	7	10	0.950
cheng.D3-1	3	3	3	0.999	cheng.D3-2	3	3	3	0.999
concert	2	3	2	0.999	ejs1	3	4	2	0.999
ejs3	2	2	2	0.999	ejs5	2	2	2	0.999
ejs6	2	2	2	0.999	ejs7	2	2	2	0.999
ejs-ft-counter	2	2	2	0.900	line4-2goals	4	2	1	0.999
marking	9	4	3	0.870	marking2	9	4	3	0.870
mcc-example1	4	3	3	0.750	mcc-example2	4	3	3	0.750
mini-hall2	13	3	9	0.950	network.95	7	4	2	0.950
network	7	4	2	0.950	paint.95	4	4	2	0.950
parr95.95	7	3	6	0.950	saci-s12-a6-z5.95	12	6	5	0.950
saci-s100-a10-z31	100	10	31	0.950	shuttle.95	8	3	5	0.950
stand-tiger.95	4	4	4	0.950	tiger.95	2	3	2	0.950
tiger.aaai	2	3	2	0.750	web-ad	4	3	5	0.950
web-mall	2	3	2	0.950	hanks.95	4	4	2	0.950
baseball	7,681	6	9	0.999					

Problem	Gap	$V^L(b_0)$	$V^U(b_0)$	$ \Gamma $	$ B^s $	$\hat{\mathcal{P}}_{f,L}^{g,U}(\delta)$	Time (s)
1d	0.00	1.26	1.26	6	9	9	0.00
4×3.95	0.01	1.89	1.90	227	152	152	0.25
$4 \times 5 \times 2.95$	0.01	2.08	2.09	2,428	1,680	1,679	30.62
bridge-repair	63	40,421	40,484	7	22	21	0.02
cheese.95	0.01	3.48	3.49	56	12	12	0.02
cheese-taxi	0.00	2.48	2.48	174	33	33	0.02
cheng.D3-1	10	6,417	6,427	8	31,565	26,202	989.98
cheng.D3-2	10	8,240	8,250	6	6,920	4,802	85.06
concert	0.00	0	0	1	1	1	0.01
ejs1	1	421	422	9	12,089	11,359	448.04
ejs3	0	1,712	1,712	5	12	11	0.07
ejs5	0	0	0	1	1	1	0.00
ejs6	0	0	0	1	1	1	0.00
ejs7	0	0	0	1	1	1	0.00
ejs-ft-counter	0.00	-3.18	-3.18	3	2	2	0.00
line4-2goals	0.00	0.47	0.47	2	3	3	0.00
marking	0.00	2.75	2.75	50	16	16	0.01
marking2	0.00	2.75	2.75	48	16	16	0.01
mcc-example1	0.00	0.38	0.38	10	21	21	0.00
mcc-example2	0.00	0.38	0.38	10	21	21	0.00
mini-hall2	0.01	2.71	2.72	166	18	18	0.04
network.95	1	293	294	24	3,023	3,023	10.40
network	1	293	294	24	3,065	3,065	10.12
paint.95	0.00	3.29	3.29	14	157	153	0.09
parr95.95	0.01	7.19	7.20	8	7	7	0.01
saci-s12-a6-z5.95	0.03	14.80	14.83	9	58	58	0.02
saci-s100-a10-z31	0.06	16.56	16.62	2	29	29	0.41
shuttle.95	0.10	32.79	32.89	109	6	6	0.02
stand-tiger.95	0.08	50.38	50.46	136	40	40	0.09
tiger.95	0.05	19.36	19.41	12	21	19	0.02
tiger.aaai	0.00	1.93	1.93	5	7	6	0.00
web-ad	0.001	0.804	0.805	543	738	725	1.32
web-mall	0.01	6.90	6.91	13	63	60	0.03
hanks.95	0.01	3.29	3.30	14	157	153	0.14
baseball	0.001	0.641	0.642	424	258	257	4.02

Table 7. Performance comparison, SARSOP and PGVI. Here, Time represents the total computation time, and T_0 represents the initialization time on each test problem.

Problem	Gap	Time (seconds)			$Time - T_0$ (seconds)		
		SARSOP	PGVI	Speedup	SARSOP	PGVI	Speedup
FieldVisionRockSample[5,5]	0.47	9,764	2,570	3.80	9,764	2,570	3.80
Tracking	0.69	9,998	2,294	4.36	9,105	1,401	6.50
Homecare	3.43	9,987	1,819	5.49	9,577	1,409	6.80
3D Navigation	754,977	9,934	< 1,719	> 5.78	9,922	< 1,707	> 5.81