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Abstract

Motion planning in uncertain and dynamic environments is
critical for reliable operation of autonomous robots. Par-
tially observable Markov decision processes (POMDPs) pro-
vide a principled general framework for such planning tasks
and have been successfully applied to several moderately
complex robotic tasks, including navigation, manipulation,
and target tracking. The challenge now is to scale up
POMDP planning algorithms and handle more complex, re-
alistic tasks. This paper outlines ideas aimed at overcom-
ing two major obstacles to the efficiency of POMDP plan-
ning: the “curse of dimensionality” and the “curse of his-
tory”. Our main objective is to show that using these ideas—
along with others—POMDP algorithms can be used success-
fully for motion planning under uncertainty for robotic tasks
with a large number of states or a long time horizon. We im-
plemented some of our algorithms as a software package Ap-
proximate POMDP Planning Library (APPL), now available
for download at http://motion.comp.nus.edu.sg/
projects/pomdp/pomdp.html.

Introduction
Motion planning research has made great strides in the last
decades. Using probabilistic sampling, motion planning al-
gorithms can now effectively deal with robots with many
degrees of freedom (DoFs) (Choset et al. 2005). How-
ever, these algorithms often assume that the robot can per-
fectly control its actions and sense the ambient environment.
This assumption is reasonable in carefully engineered set-
tings, such as robot manipulators on manufacturing assem-
bly lines, but becomes more and more difficult to justify, as
robots venture into new application domains in homes or in
offices. In these uncontrolled, uncertain, and dynamic envi-
ronments, motion planning with imperfect state information
is critical for autonomous robots to operate reliably.

Partially observable Markov decision processes
(POMDPs) (Smallwood and Sondik 1973) are a prin-
cipled general framework for such planning tasks. With
imperfect state information, the robot cannot decide the best
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action based on a single current state, as it is unknown. In-
stead, the robot must consider all possible states consistent
with the observations. In a POMDP, we represent such a
set of states as a belief b, which is a probability distribution
over the robot’s state space. The probability b(s) of a state
s indicates how likely the robot is in s. To solve a POMDP,
we reason in the belief space B, the space containing all
beliefs, and compute a policy that prescribes the best action
for every belief that the robot may encounter. POMDP
planning systematically takes into account the uncertainty
in robot control, sensing, and environment changes,
in order to achieve robust performance. It has shown
promising performance in several moderately complex
robotic tasks (Hsiao, Kaelbling, and Lozano-Pérez 2007;
Hsu, Lee, and Rong 2008; Pineau, Gordon, and Thrun 2005;
Roy, Gordon, and Thrun 2005).

One common criticism of POMDP planning is its high
computational complexity. Solving POMDPs exactly is
computationally intractable (Papadimitriou and Tsisiklis
1987). To develop efficient POMDP planning algorithms,
we face at least two main obstacles. The first is the “curse
of dimensionality”. The belief space, which allows us to
reason systematically about uncertainty, is also the source
of this difficulty. Suppose that a robotic task is modeled
with a discrete state space. The corresponding belief space
then has dimensionality equal to the number of states for the
robot: a robot with 1,000 states results in a belief space of
1,000 dimensions! In recent years, point-based POMDP al-
gorithms have made significant progress in overcoming this
difficulty by sampling the belief space probabilistically and
computing approximate solutions. The fastest algorithms to-
day, such as HSVI2 (Smith and Simmons 2005) and SAR-
SOP (Kurniawati, Hsu, and Lee 2008), can solve POMDPS
with hundreds of states in seconds and POMDPs with up to
100,000 states in reasonable time. However, more progress
is needed to handle truly complex robotic tasks.

The second obstacle is the “curse of history”. Motion
planning tasks often require the robot to take many actions
to achieve a goal, resulting in a long time horizon for plan-
ning. The complexity of planning usually grows exponen-
tially with the time horizon.

This paper outlines two ideas aimed at overcoming each
of the two obstacles. Our main objective is to show that
using these ideas—along with others—POMDP algorithms



can be used successfully for motion planning under uncer-
tainty for robotic tasks with a large number of states or a long
time horizon. We demonstrate this through experiments in
simulation on three distinct tasks: grasping, target tracking,
and navigation. All these tasks are based on ones reported
in the literature in the last two years. We modeled these
tasks as POMDPs and solved the resulting POMDPs using
our algorithms. Furthermore, we implemented some of our
algorithms as a software package, now freely available for
download.

Background
Related work
In classic motion planning (without uncertainty), configura-
tion space (Lozano-Pérez 1983) provides a general concep-
tual framework which allows many apparently different mo-
tion planning problems to be formulated uniformly. It has
also led to the development of efficient planning algorithms
based on the idea of probabilistically sampling a robot’s con-
figuration space (see (Choset et al. 2005) for a survey).
Sampling-based algorithms provide the most successful ap-
proach today for motion planning of robots with many DoFs.
Although lots of interesting and significant work has been
done for motion planning with uncertainty (see (Latombe
1991; LaValle 2006) for surveys), a general framework like
configuration space is not yet available. POMDPs (Small-
wood and Sondik 1973; Kaelbling, Littman, and Cassandra
1998) can potentially play this role. However, POMDP plan-
ning had been plagued with computational efficiency issues.
Just ten years ago, the best algorithms could spend hours
solving POMDPs with only a dozen states, which are woe-
fully inadequate for modeling realistic robotic tasks. Only
recently, point-based POMDP algorithms (Pineau, Gordon,
and Thrun 2003; Spaan and Vlassis 2005; Smith and Sim-
mons 2005; Kurniawati, Hsu, and Lee 2008; Ong et al.
2009; Kurniawati et al. 2009) made dramatic progress in
computational efficiency so that POMDPs with 10,000s and
sometimes 100,000s of states can be solved approximately
in reasonable time. These algorithms made it more practical
to apply POMDP as a tool for robot motion planning under
uncertainty. The ideas and examples in this paper illustrate
the kind of robotic tasks that can be handled by the fastest
POMDP algorithms today.

POMDPs
A POMDP models an agent taking a sequence of actions
under uncertainty to maximize its total reward. Formally a
discrete POMDP with an infinite horizon is specified as a
tuple (S ,A,O , T , Z,R, γ), where S is a set of states, A is a
set of actions, and O is a set of observations.

In each time step, the agent takes an action a ∈ A and
moves from a state s ∈ S to s′ ∈ S . Due to the uncer-
tainty in action, the end state s′ is described as a conditional
probability function T (s, a, s′) = p(s′|s, a), which gives the
probability that the agent lies in s′, after taking action a in
state s. The agent then makes an observation on the end state
s′. Due to the uncertainty in observation, the observation re-
sult o ∈ O is again described as a conditional probability

function Z(s′, a, o) = p(o|s′, a) for s′ ∈ S and a ∈ A.
To elicit desirable agent behavior, we define a suitable re-

ward function R(s, a). In each step, the agent receives a
real-valued reward R(s, a), if it is in state s and takes action
a. The goal of the agent is to maximize its expected total re-
ward by choosing a suitable sequence of actions. When the
sequence of actions has infinite length, we typically specify
a discount factor γ ∈ (0, 1) so that the total reward is finite
and the problem is well defined. In this case, the expected
total reward is E[

∑∞
t=0 γ

tR(st, at)], where st and at denote
the agent’s state and action at time t.

POMDP planning means computing an optimal policy
that maximizes the agent’s expected total reward. In the
more familiar case where the agent’s state is fully observ-
able, a policy prescribes an action, given the agent’s current
state. However, a POMDP agent’s state is partially observ-
able and not known exactly. So we rely on the concept of
belief state, or belief for short. A belief is a probability dis-
tribution over S . A POMDP policy π : B → A maps a belief
b ∈ B to the prescribed action a ∈ A.

A policy π induces a value function V π , which speci-
fies the expected total reward V π(b) of executing π starting
from b. It is known that V ∗, the value function for an opti-
mal policy π∗, can be approximated arbitrarily closely by a
piecewise-linear, convex function

V (b) = maxα∈Γ(α · b), (1)
where b is a discrete vector representation of a belief and Γ
is a finite set of vectors called α-vectors. Each α-vector is
associated with an action, and the policy can be executed by
selecting the action corresponding to the best α-vector at the
current belief b. So a policy can be represented by a set Γ of
α-vectors. Policy computation, which, in this case, involves
the construction of Γ, is usually performed offline.

Given a policy π, the control of the agent’s actions is per-
formed online in real time. It consists of two steps executed
repeatedly. The first step is policy execution. If the agent’s
current belief is b, it then takes the action a = π(b), accord-
ing to the given policy π. The second step is belief estima-
tion. After taking an action a and receiving an observation
o, the agent updates its belief state:
b′(s′) = τ(b, a, o) = ηZ(s′, a, o)

∑
s∈S T (s, a, s′)b(s),

(2)
where η is a normalizing constant. The process then repeats.

More information about POMDPs is available in (Kael-
bling, Littman, and Cassandra 1998; Thrun, Burgard, and
Fox 2005).

POMDP Planning
Overview of point-based POMDP algorithms
Point-based algorithms have been highly successful in com-
puting approximate solutions to POMDPs with a large num-
ber of states. They are based on value iteration (Russell and
Norvig 2003), which is an iterative approach for computing
the optimal value function V ∗. Value iteration starts with
an initial approximation to V ∗, represented as a set Γ of α-
vectors. It exploits the fact that V ∗ must satisfy the Bellman
equation and performs backup operations on the approxima-
tion by iterating on the Bellman equation, until the iteration



Algorithm 1 Point-based POMDP planning
1: Insert the initial belief point b0 as the root of the tree TR.
2: Initialize the set Γ of α-vectors.
3: repeat
4: Sample new belief points and insert them into TR by repeat-

edly calling SAMPLE(TR, Γ).
5: Choose a subset of nodes from TR. For each chosen node

b, BACKUP(TR,Γ, b).
6: PRUNE(TR, Γ).
7: until termination conditions are satisfied.
8: return Γ.

SAMPLE(TR, Γ)
10: Pick a node b from TR, a ∈ A, and o ∈ O .
11: b′ ← τ(b, a, o).
12: Insert b′ into TR as a child of b.

BACKUP(TR, Γ, b)
13: For all a ∈ A, o ∈ O , αa,o ← argmaxα∈Γ(α · τ(b, a, o)).
14: For all a ∈ A, s ∈ S , αa(s)← R(s, a)+

γ
P
o∈O,s′∈S T (s, a, s′)Z(s′, a, o)αa,o(s

′).
15: α′ ← argmaxa∈A(αa · b)
16: Insert α′ into Γ.

converges. One key idea behind the success of point-based
algorithms is to sample a set of points from the belief space
B and use it as an approximate representation of B, rather
than represent B exactly. The various existing point-based
algorithms differ mainly in how they sample B.

Algorithm 1 shows the common structure shared by some
of the fastest point-based POMDP algorithms, such as
HSVI2 and SARSOP. After initialization, the algorithm iter-
ates over three main steps: SAMPLE, BACKUP, and PRUNE.
Let R ⊆ B be the set of points reachable from a given ini-
tial belief point b0 ∈ B under arbitrary sequences of actions
and observations. Most of the recent point-based POMDP
algorithms sample from R instead of B for computational
efficiency. The sampled points form a belief tree TR (Fig-
ure 1). Each node of TR represents a sampled point b ∈ B.
The root of TR is the initial belief point b0. To sample a new
point b′, we pick a node b from TR as well as an action a ∈ A
and an observation o ∈ O according to suitable probability
distributions or heuristics. We then compute b′ = τ(b, a, o)
using (2) and insert b′ into TR as a child of b. Clearly ev-
ery point b′ obtained this way is reachable from b0. We then
perform backup operations at each node along the path from
b′ to the root b0. A backup operation at a node b collates
the information in the children of b and propagates it back to
b. Invocation of SAMPLE and BACKUP generates new sam-
pled points and α-vectors. However, not all of the α-vectors
are useful for constructing an optimal policy and are pruned
from Γ to improve computational efficiency.

Algorithm 1 clearly shows the effects of the two “curses”
on computational efficiency. In a POMDP with discrete state
space, a belief b is typically represented as a vector, and b(s)
gives the probability of a robot in state s. The efficiency of
all the primitive operations, such as belief update (line 11)
and backup (lines 13-15), depends directly on the dimen-
sionality of B, i.e., the number of states for the robot.

Furthermore, if a task requires an effective planning
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o1 o2

b0

Figure 1: The belief tree TR rooted at b0

horizon of h actions and observations, TR may contain
O((|A||O |)h) nodes in the worst case, where |A| is the num-
ber of actions and |O| is the number of observations. So the
size of TR grows exponentially with h. In principle, deter-
ministic planning suffers from long planning horizons in a
similar way. However, each node of TR corresponds to a
point in B. The enormous size of B fails to place any limit
on the growth of TR, and thus aggravates the difficulty.

Reducing the dimensionality of belief space
A high-dimensional belief space arises because a robot’s
state is not fully observable. Complex robotics systems,
however, often have mixed observability: even when a
robot’s state is not fully observable, some components of
the state may still be fully observable. For example, con-
sider a mobile robot operating in a multi-storey building.
The robot’s state consists of its current horizontal position
p, orientation θ, and floor `. Suppose that the building has
10 floors and after discretization, the robot may assume any
of 100 possible positions on a 10 × 10 grid in the horizon-
tal plane and 36 orientations. The robot is equipped with a
compass, but the geographic positioning system (GPS) is in-
effective indoors. Since the robot cannot localize accurately
in the horizontal plane, the state (p, θ, `) is not fully observ-
able, and the resulting belief space is 36,000-dimensional.
Note, however, that θ is in fact fully observable, if the com-
pass is sufficiently accurate. We may also reasonably as-
sume that ` is fully observable. So we only need to main-
tain a belief on the robot’s uncertain horizontal position p.
The belief space then becomes a union of 360 disjoint 100-
dimensional subspaces. Each subspace corresponds to a spe-
cific value of θ, a specific value of `, and beliefs on p. These
100-dimensional subspaces are still large, but a drastic re-
duction from the original 36,000-dimensional space.

More generally, we propose that the state of a system
with mixed observability be factored into two parts (Fig-
ure 2). The fully observable state components are repre-
sented as a single state variable x, while the partially observ-
able components are represented as another state variable y.
Together (x, y) specifies the complete system state, and the
state space is factored as S = X × Y , where X is the space
of all possible values for x and Y is the space of all pos-
sible values for y. In the example above, x represents the
orientation θ and the floor `, and y represents the horizontal
position p.

The computational advantages of this new factored rep-
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Figure 2: The POMDP model (left) and the MOMDP model
(right). A MOMDP state s is factored into two variables:
s = (x, y), where x is fully observable and y is partially
observable.

resentation become apparent when we consider the belief
space B. Since the state variable x is fully observable and
known exactly, we only need to maintain a belief bY , a prob-
ability distribution on the state variable y. Any belief b ∈ B
on the complete system state s = (x, y) is then represented
as (x, bY ). Let BY denote the space of all beliefs on y. We
now associate with each value x of the fully observable state
variable a belief space for y: BY (x) = {(x, bY ) | bY ∈ BY }.
BY (x) is a subspace in B, and B is a union of these sub-
spaces: B =

⋃
x∈X BY (x). While B has apparently |X||Y |

dimensions, where |X| and |Y | are the number of states in
X and Y , each BY (x) has only |Y | dimensions. Effectively
we represent the high-dimensional space B as a union of
lower-dimensional subspaces.

Using this new representation, we can redefine the tran-
sition function T in the POMDP model and formally intro-
duce a new model called mixed observability Markov deci-
sion process (MOMDP), which is equivalent to the POMDP
model, but more compact. We can perform all the prim-
itive operations in Algorithm 1, such as belief update and
backup, in this new model. When the uncertainty in a system
is small, specifically, when |Y | is small, the new representa-
tion results in dramatic improvement in computational effi-
ciency, due to the reduced dimensionality of the belief space
representation. Further details of the point-based MOMDP
algorithm can be found in (Ong et al. 2009).

Reducing the time horizon
As we have seen in the overview of point-based POMDP al-
gorithms, the main difficulty here is the exponential growth
of the belief tree TR. To address this issue, our basic idea is
to sampleR at multiple resolutions by progressively refining
TR and avoid constructing TR completely unless needed.

Recall that we create a new node b′ from an exist-
ing node b in TR using a single action-observation pair:
b′ = τ(b, a, o). Instead, we can use a sequence of action-
observation pairs (a1, o1, a2, o2, . . . , a`, o`) such that b1 =
τ(b, a1, o1) and bi = τ(bi−1, ai, oi) for 2 ≤ i ≤ `. We then
set b′ = b`. This avoids potentially unnecessary branch-
ing out of TR at the intermediate beliefs b1, b2, . . . , b`−1 and
results in a less “bushy” belief tree. The intuitive justifica-
tion is that many action-observation sequences have similar
effects on the belief and exploring one of the sequences is
sufficient.

To implement this idea, we build a roadmap G, which is
a directed graph in a robot’s state space S . The nodes of
G, called milestones, are states sampled from S . A directed
edge e from a node s to s′ is annotated with an action se-
quence (a1, a2, . . . , a`) that brings the robot from s to s′.
The edge e is also annotated with a sampled observation se-
quence (o1, o2, . . . , o`) that the robot may encounter while
executing the actions (a1, a2, . . . , a`). If we treat G as a
collection of edges, each representing a sequence of actions
and observations, we can then use these edges to construct
TR. To generate a new child of a node b in TR, we first as-
sociate b with a suitable node s in G with b(s) > 0. We then
choose an edge e of G with start node s and apply the asso-
ciated action-observation sequence to b and derive the child
node b′. Suppose, for example, that G has maximum degree
d and each edge of G contains an action sequence of length
`. Then, for a POMDP with time horizon h, TR contains
at most O(d h/`) nodes. Comparing this to the worst-case
O((|A||O|)h) nodes of the usual point-based algorithms in-
dicates that the action sequences encoded in G reduce the
effect of long planning horizons, assuming that the size of
d can be controlled during the roadmap construction. Since
TR grows exponentially with h, the reduction is significant.

Essentially, the algorithm we propose, Milestone Guided
Sampling (MiGS), constructs a sampled representation of
the state space in the form of a roadmap G, and uses this
to guide sampling in R. Now, to sample R at multiple res-
olutions, we start with a roadmap G with a small number
of nodes. The edges connecting these nodes are necessarily
annotated with action-observation sequences that are rela-
tively long. In other words, ` is large, which significantly
reduces the effective planning horizon, but also results in
coarse sampling of R. We then progressively add more
nodes to G. This reduces the lengths of action-observation
sequences connecting the nodes of G and thus refines the
sampling ofR. However, as ` becomes smaller, the compu-
tational costs increase as well.

One may question: since G contains only a sampled sub-
set of states in S and not all states, can it possibly lead
to a sufficiently good policy? The answer is yes, and we
can prove that if our algorithm samples S adequately when
constructing G and samples R adequately when construct-
ing TR, then we can obtain an approximately optimal value
function with bounded error. The error bound depends on
the resolution at which S and R are sampled. See (Kurni-
awati et al. 2009) for the details of roadmap construction
and the proof.

Software Implementation
Based on the above as well as other related ideas,
we implemented a C++ software package Approximate
POMDP Planning Library (APPL), now available for
download at http://motion.comp.nus.edu.sg/
projects/pomdp/pomdp.html.

APPL has several useful features for those interested in
using POMDPs for robot motion planning:

• APPL provides a new XML-based file format POMDPX
for specifying POMDP/MOMDP models in a compact
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Figure 3: Three robotic tasks used in the experiments. (a) Grasping. (b) Target tracking with a sensor network. Dark brown
regions indicate obstacles. “S” marks the sensor locations. (c) UAV navigation. “S” marks the start region. “G” marks the goal
region. “D” marks danger zones. Ellipses indicate landmarks.

and flexible way. APPL is backward compatible and can
read the standard POMDP format as well. As an example,
the file for RockSample(7,8), a benchmark problem, has
18.9 MB in the standard format, but only 0.1 MB in the
new POMDPX format.

• We can also specify the input POMDP/MOMDP models
in C++ and access the solver algorithm in APPL through
a well-defined programming API.

• APPL provides several ways to examine the computed
policy. It contains a simple simulator for estimating the
expected total reward of a policy. It can also output a
computed policy in a graphical form similar to a finite-
state machine controller diagram.

For those interested in improving POMDP algorithms,
APPL provides efficient implementation of primitive opera-
tions, such as belief update and backup. The belief represen-
tation is encapsulated and can be changed without affecting
the solver algorithm.

Experiments
To examine the abilities of current POMDP algorithms for
robot motion planning, we evaluated our software on robotic
tasks with a large number of states or a long time horizon.
We chose three distinct robotic tasks reported in the recent
literature and modeled them as POMDPs. For each task, we
spent a maximum of two hours in computing a policy. The
experiments were performed on a PC with a 2.66GHz Intel
processor and 2GB memory.

Grasping
In this simplified grasping task (Hsiao, Kaelbling, and
Lozano-Pérez 2007), a robot arm with two fingers tries to
grasp a stepped block in a two-dimensional environment
(Figure 3a). Each finger has contact sensors at the tip and
the sides. The arm performs compliant guarded moves (left,
right, up, and down) and always maintains contact with the
surface of the block or the boundary of the environment at
the beginning and end of each move. The goal is to move

Table 1: Grasping. |S| = 1, 253, |A| = 6, and |O| = 96.

Reward Time (s)
SARSOP 320.1± 0.5 8.0
HSVI2 319.5± 0.4 8.0
QMDP 319.9± 0.5 <1

the robot arm and have its two fingers straddle the block so
that grasping is possible. Due to the limited sensor infor-
mation, the uncertainty on the finger positions is high. The
robot must perform information-gathering actions in order
to grasp the block successfully.

The POMDP model of this task is very carefully con-
structed (Hsiao, Kaelbling, and Lozano-Pérez 2007). It dis-
cretizes the geometric environment into a small number of
discrete states and uses the guarded moves as actions in or-
der to reduce the planning horizon.

We ran SARSOP (Kurniawati, Hsu, and Lee 2008) and
HSVI2 (Smith and Simmons 2005), two of the fastest
POMDP algorithms today, on this task. Both algorithms are
implemented in C++. SARSOP is included as part of the
APPL software package. For HSVI2, we used the newest
software released by its original author, zmdp v.1.1.6. We
first performed long preliminary runs to determine approx-
imately the reward level for the optimal policies and the
amount of time needed to reach it. We then ran the algo-
rithms to reach this level. To estimate the expected total
reward of the resulting policy, we performed a sufficiently
large number of simulation runs until the variance in the es-
timated value was small.

The results are shown in Table 1. Column 2 of the ta-
ble shows the estimated expected total rewards for the com-
puted policies and the 95% confidence intervals. Column 3
shows the running times for policy computation. As a base-
line comparison, we also ran QMDP, a popular heuristic un-
certainty planning algorithm, which assumes that after one
step, the state becomes fully observable. The running time
of QMDP gives a rough indication of the difficulty of the
uncertainty planning task.



In this task, the challenges of a large state space and a long
planning horizon are tackled through careful POMDP mod-
eling. The resulting POMDP model in fact has a small state
space and a relatively short planning horizon. Both SAR-
SOP and HSVI2 computed approximately optimal policies
quickly. Even the less capable QMDP was able to attain
comparable results. However, such clever modeling requires
significant insight of the underlying task. In general, it is not
easy to come up with a POMDP model with a compact state
space and a short planning horizon.

Target tracking with a sensor network
In this target tracking task (O’Kane and Xu 2009), a robot
watches over a person, moving around in an office building
and attends to his call for help as soon as possible. The envi-
ronment is modeled as a two-dimensional grid (Figure 3b).
At each time step, the robot either stays or moves to one of
its eight neighboring cells. Moving consumes energy, while
staying does not. The target, i.e., the person, moves around
and calls the robot for help when needed. He then stays in
place until the robot arrives to help him.

To respond to a call for help, the robot needs the person’s
location. A sparse sensor network is installed in the build-
ing. Each node in the network is a one-bit proximity sen-
sor that senses whether a person is within a small immedi-
ate neighborhood. The sensors are quite noisy. Both false
positives and false negatives may occur. Information from
one node propagates to other nodes in the network instan-
taneously. However, the robot can access this information
only if it is close enough to one of the sensors. Although the
person’s position is uncertain and the robot cannot anticipate
beforehand when its help would be required, the robot must
come to the person’s aid as soon as possible, and at the same
time, avoid consuming energy unnecessarily.

In this task, the size of the state space increases rapidly
with that of the geometric environment, because the state
contains both the robot’s and the target’s positions. Fur-
thermore, the robot needs to keep track of whether the per-
son is calling for help. So a moderately-sized environment
with 124 grid cells, which we used in our experiments, has
over 30, 000 states, resulting in a 30, 000-dimensional belief
space!

Fortunately, we can represent the belief space much more
efficiently using the MOMDP approach described earlier. In
this tracking task, we can reasonably assume that the uncer-
tainty on the target’s position is much greater than that on the
robot’s position. If robot localization is accurate enough, we
can even assume that the only uncertainty is on the target’s
position, and that the robot’s position is fully observable.
We thus model this tracking task as a MOMDP: the fully
observable variable x represents the robot’s position and the
person’s call for help, while the partially observable variable
y represents the person’s position. This greatly reduces the
belief space dimensionality. The belief space is now repre-
sented as a union of 124-dimensional subspaces rather than
a single 30, 000-dimensional space.

We ran the SARSOP algorithm using the MOMDP model
for this task. We also ran HSVI2, but using the standard

Table 2: Target tracking with a sensor network.

Reward Time (s)
124-cell grid
|S|=30,752, |A|=9, |O|=20,088

|X|=248, |Y|=124

MOMDP 2.1± 0.6 1232
HSVI2 – –
QMDP – –
38-cell grid
|S|=2,888,|A|=9,|O|=684

|X|=76,|Y|=38

MOMDP 29.1± 1.9 60
HSVI2 27.2± 6.0 3730
QMDP 10.0± 1.3 2

POMDP model, because the zmdp software does not support
the MOMDP representation.

Results were obtained using a similar procedure as that in
the previous experiment, and are shown in Table 2. Using
the MOMDP representation, SARSOP computed a reason-
able policy in about 20 minutes. HSVI2 and QMDP use the
standard POMDP models and failed to load the model files,
because they are too large.

To make a comparison, we constructed a coarser grid
of 38 cells for the same geometric environment and re-
peated the experiments with the three algorithms. The re-
sults clearly demonstrate the benefit of the MOMDP model
over the standard POMDP model. Using the MOMDP
model, SARSOP achieved the best reward level after only
one minute of computation. HSVI2 reached a similar re-
ward level after one hour. QMDP was unable to achieve a
comparable reward level at all.

UAV navigation
In this navigation task (He, Prentice, and Roy 2008), an un-
manned aerial vehicle (UAV) navigates in an indoor envi-
ronment where GPS signal is unavailable. The environment
is modeled as a three-dimensional grid with 5 levels and
18 × 14 positions on each level (Figure 3c). The robot’s
state consists of its grid position and the (discretized) pitch
and yaw angles. The robot needs to navigate from a start re-
gion to a goal region. At each time step, the robot can either
rotate in place or move forward to one of its adjacent cells
according to its heading. However, when the robot tries to
move forward, it may drift to its left or right, or remain at the
same cell. Moreover, there are danger zones that the robot
must avoid.

As there is no GPS signal, the robot must rely on land-
marks in the environment to localize. Due to the limited
sensing ability, the robot can observe a landmark only when
it is close enough and is headed towards the landmark. De-
spite poor localization, the robot must get to the goal region
as quickly as possible while avoiding obstacles and danger-
ous zones along the way.

For most robot navigation tasks, a major difficulty is the
long planning horizon. Here, this difficulty is aggravated by
the relatively large state space. To examine how effective the
MiGS algorithm is in managing long planning horizons, we



Table 3: UAV navigation. |S| = 16, 969, |A| = 5, and
|O| = 14.

Success Reward Time (s)
Rate (%)

MiGS 88.2 371.1± 67.9 1000
HSVI2 24.0 65.6± 8.3 7201
QMDP 0.1 0.7± 0.2 <1

applied it to this task and compared the results with those
from HSVI2, using the same procedure as in the previous
experiments, and running both algorithms for a maximum
of two hours. The MiGS algorithm is implemented in C++,
but it is yet to be integrated into the APPL software package.

The results are shown in Table 3. In addition to the reward
levels and running times, we also show the success rates, i.e.,
the percentage of simulation runs in which the UAV reaches
the goal. The results indicate that MiGS is effective in alle-
viating the difficulty of long planning horizons. It achieved
a success rate of 88.2% after around 15 minutes of policy
computation. In comparison, HSVI2 had a success rate of
24.0% after 2 hours.

HSVI2 had poor performance on this task because its
search heuristic failed to explore the reachable belief space
R adequately, due to the sheer size of R in this long hori-
zon task. MiGS uses state space information to sampleR at
multiple resolutions and thus explores a much larger part of
R efficiently.

The results also show that QMDP performed very poorly
on this task. QMDP assumes that after one step, the state
becomes fully observable. However, in this task, many steps
are required before any observations become available. As
a result, the policy generated by QMDP seldom brings the
UAV to the goal region. This stresses the importance of tak-
ing into account uncertainty in a principled and systematic
way for complex planning task.

Conclusion
POMDPs provide a principled general framework for mo-
tion planning in uncertain and dynamic environments and
have been successfully used for various robotic tasks in mo-
tion planning (Hsiao, Kaelbling, and Lozano-Pérez 2007;
Pineau, Gordon, and Thrun 2003; Smith and Simmons
2005). However, in scaling up to more complex tasks,
POMDP planning algorithms are challenged by two obsta-
cles – the “curse of dimensionality” and the “curse of his-
tory”. We have presented two ideas that help to overcome
these two challenges – experimental results show that algo-
rithms based on our approaches significantly outperform the
fastest POMDP solvers today. The results also highlight the
necessity of taking into account uncertainty in a principled
and systematic way, for motion planning in complex tasks.

Ten years ago, the best POMDP algorithm could solve
POMDPs with a dozen states. Five years ago, a point-based
algorithm solved a POMDP with almost 900 states, and it
was a major accomplishment. Nowadays, POMDPs with
hundreds of states can often be solved in seconds, and much
larger POMDPs can be solved in reasonable time. We hope

that our work is a step further in scaling up POMDP algo-
rithms and ultimately making them practical for robot mo-
tion planning in uncertain and dynamic environments.
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